A Hybrid Analytical-Neural Inverse Kinematics Solution, CVPR 2021


  • [ ] Provide pretrained model
  • [ ] Provide parsed data annotations

Installation instructions

# 1. Create a conda virtual environment.
conda create -n hybrik python=3.6 -y
conda activate hybrik

# 2. Install PyTorch
conda install pytorch==1.1.0 torchvision==0.3.0

# 3. Pull our code
git clone https://github.com/Jeff-sjtu/HybrIK.git
cd HybrIK

# 4. Install
python setup.py develop

Fetch data

Download Human3.6M, MPI-INF-3DHP, 3DPW and MSCOCO datasets. You need to follow directory structure of the data as below.

|-- data
`-- |-- h36m
`-- |-- pw3d
`-- |-- 3dhp
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- train2017
        `-- val2017
  • Download Human3.6M parsed data. (WIP)
  • Download 3DPW parsed data. (WIP)
  • Download MPI-INF-3DHP parsed data. (WIP)

Train from scratch

./scripts/train_smpl.sh train_res34 ./configs/256x192_adam_lr1e-3-res34_smpl_3d_base_2x_mix.yaml


./scripts/validate_smpl.sh ./configs/256x192_adam_lr1e-3-res34_smpl_3d_base_2x_mix.yaml ${CKPT}


If our code helps your research, please consider citing the following paper:

    title={HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation},
    author={Li, Jiefeng and Xu, Chao and Chen, Zhicun and Bian, Siyuan and Yang, Lixin and Lu, Cewu},