BoMb-OT

Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via Partial Transportation.

Please CITE our papers whenever this repository is used to help produce published results or incorporated into other software.

@article{nguyen2021transportation,
      title={On Transportation of Mini-batches: A Hierarchical Approach}, 
      author={Khai Nguyen and Dang Nguyen and Quoc Nguyen and Tung Pham and Hung Bui and Dinh Phung and Trung Le and Nhat Ho},
      journal={arXiv preprint arXiv:2102.05912},
      year={2021},
}

@article{nguyen2021improving,
      title={Improving Mini-batch Optimal Transport via Partial Transportation}, 
      author={Khai Nguyen and Dang Nguyen and Tung Pham and Nhat Ho},
      journal={arXiv preprint arXiv:2108.09645},
      year={2021},
}

This implementation is made by Khai Nguyen and Dang Nguyen. README is on updating process.

Requirement

  • python 3.6
  • pytorch 1.7.1
  • torchvision
  • numpy
  • tqdm
  • geomloss
  • POT
  • matplotlib
  • cvxpy

What is included?

The scalable implementation of the batch of mini-batches scheme and the conventional averaging scheme of mini-batch transportation types: optimal transport (OT), partial optimal transport (POT), unbalanced optimal transport (UOT), sliced optimal transport for:

  • Deep Generative Models
  • Deep Domain Adaptation
  • Approximate Bayesian Computation
  • Color Transfer
  • Gradient Flow

Deep Adaptation on digits datasets (DeepDA/digits)

Code organization

cfg.py : this file contains arguments for training.

methods.py : this file implements the training process of the deep DA.

models.py : this file contains the architecture of the genertor and the classifier.

train_digits.py: running file for deep DA.

utils.py : this file contains implementation of utility functions.

Terminologies

–method : type of mini-batch deep DA method (jdot, jumbot, jpmbot)

–source_ds : source dataset

–target_ds : target dataset

–epsilon : OT regularization coefficient for Sinkhorn algorithm

–tau : marginal penalization coefficient in UOT

–mass : fraction of masses in POT

–eta1 : weight of embedding loss

–eta2 : weight of transportation loss

–k : number of mini-batches

–mbsize : mini-batch size

–n_epochs : number of running epochs

–test_interval : interval of two continuous test phase

–lr : initial learning rate

–data_dir : path to dataset

–reg : OT regularization coefficient for Sinkhorn algorithm

–bomb : Using Batch of Mini-batches

–ebomb : Using entropic Batch of Mini-batches

–breg : OT regularization coefficient for entropic Batch of Mini-batches

Change the number of mini-batches $k$

bash sh/exp_mOT_change_k.sh
bash sh/exp_BoMbOT_change_k.sh

Change the mini-batch size $m$

bash sh/exp_mOT_change_m.sh
bash sh/exp_BoMbOT_change_m.sh

Deep Adaptation on Office-Home and VisDA datasets (DeepDA/office)

Code organization

data_list.py : this file contains functions to create dataset.

evaluate.py : this file is used to evaluate model trained on VisDA dataset.

lr_schedule.py : this file implements the learning rate scheduler.

network.py : this file contains the architecture of the genertor and the classifier.

pre_process.py : this file implements preprocessing techniques.

train.py : this file implements the training process for both datasets.

Terminologies

–net : architecture type of the generator

–dset : name of the dataset

–test_interval : interval of two continuous test phase

–s_dset_path : path to source dataset

–stratify_source : use stratify sampling

–s_dset_path : path to target dataset

–batch_size : training batch size

–stop_step : number of iterations

–ot_type : type of OT loss (balanced, unbalanced, partial)

–eta1 : weight of embedding loss ($\alpha$ in equation 10)

–eta2 : weight of transportation loss ($\lambda_t$ in equation 10)

–epsilon : OT regularization coefficient for Sinkhorn algorithm

–tau : marginal penalization coefficient in UOT

–mass : fraction of masses in POT

–bomb : Using Batch of Mini-batches

–ebomb : Using entropic Batch of Mini-batches

–breg : OT regularization coefficient for entropic Batch of Mini-batches

Train on Office-Home

bash sh/train_home.sh

Train on VisDA

bash sh/train_visda.sh

Deep Generative model (DeepGM)

Code organization

Celeba_generator.py, Cifar_generator.py : these files contain the architecture of the generator on CelebA and CIFAR10 datasets, and include some self-function to compute losses of corresponding baselines.

experiments.py : this file contains some functions for generating images.

fid_score.py: this file is used to compute the FID score.

gen_images.py: read saved models to produce 10000 images to calculate FID.

inception.py: this file contains the architecture of Inception Net V3.

main_celeba.py, main_cifar.py : running files on the corresponding datasets.

utils.py : this file contains implementation of utility functions.

Terminologies

–method : type of OT loss (OT, UOT, POT, sliced)

–reg : OT regularization coefficient for Sinkhorn algorithm

–tau : marginal penalization coefficient in UOT

–mass : fraction of masses in POT

–k : number of mini-batches

–m : mini-batch size

–epochs : number of epochs at k = 1. The actual running epochs is calculated by multiplying this value by the value of k.

–lr : initial learning rate

–latent-size : latent size of the generator

–datadir : path to dataset

–L : number of projections when using slicing approach

–bomb : Using Batch of Mini-batches

–ebomb : Using entropic Batch of Mini-batches

–breg : OT regularization coefficient for entropic Batch of Mini-batches

Train on CIFAR10

CUDA_VISIBLE_DEVICES=0 python main_cifar.py --method POT --reg 0 --tau 1 \
    --mass 0.7 --k 2 --m 100 --epochs 100 --lr 5e-4 --latent-size 32 --datadir ./data

Train on CELEBA

CUDA_VISIBLE_DEVICES=0 python main_celeba.py --method POT --reg 0 --tau 1 \
    --mass 0.7 --k 2 --m 200 --epochs 100 --lr 5e-4 --latent-size 32 --datadir ./data

Gradient Flow (GradientFlow)

python main.py

Color Transfer (Color Transfer)

python main.py  --m=100 --T=10000 --source images/s1.bmp --target images/t1.bmp --cluster

Terminologies

–k : number of mini-batches

–m : the size of mini-batches

–T : the number of steps

–cluster: K mean clustering to compress images

–palette: show color palette

–source: Path to the source image

Acknowledgment

The structure of DeepDA is largely based on JUMBOT and ALDA. The structure of ABC is largely based on SlicedABC. We are very grateful for their open sources.

GitHub

View Github