PyTorch implementation of Attentive Recurrent Comparators by Shyam et al.

A blog explaining Attentive Recurrent Comparators

Visualizing Attention

On Same characters

On Different Characters

How to run?

Download data


A one-time 52MB download. Shouldn’t take more than a few minutes.


python --cuda

Let it train until the accuracy rises to at least 80%. Early stopping is not implemented yet. You will have to manually kill the process.


python --cuda --load 0.13591022789478302 --same

Run with exactly the same parameters as and specify the model to load. Specify “–same” if you want to generate a sample with same characters in both images. The script dumps images to a directory in visualization. The name of directory is taken from –name parameter if specified, else name is a function of the parameters of network.