Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways:

  • Write less code, prototype faster & reduce errors
  • Improve reproducibility
  • Improve modularity and reusability
  • Increase code efficiency, scalability & portability
  • Augment impact and usability of your research products

The library is organized in four main modules:

  • Benchmarks: This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major CL benchmarks (similar to what has been done for torchvision).
  • Training: This module provides all the necessary utilities concerning model training. This includes simple and efficient ways of implement new continual learning strategies as well as a set pre-implemented CL baselines and state-of-the-art algorithms you will be able to use for comparison!
  • Evaluation: This modules provides all the utilities and metrics that can help evaluate a CL algorithm with respect to all the factors we believe to be important for a continually learning system. It also includes advanced logging and plotting features, including native Tensorboard support.
  • Extras: In the extras module you'll be able to find several useful utilities and building blocks that will help you create your continual learning experiments with ease. This includes configuration files for quick reproducibility and model building functions for example.
  • Models: In this module you'll be able to find several model architectures and pre-trained models that can be used for your continual learning experiment (similar to what has been done in torchvision.models).
  • Logging: It includes advanced logging and plotting features, including native stdout, file and TensorBoard support (How cool it is to have a complete, interactive dashboard, tracking your experiment metrics in real-time with a single line of code?)

Avalanche the first experiment of a End-to-end Library for reproducible continual learning research & development where you can find benchmarks, algorithms, evaluation metrics and much more, in the same place.

Let's make it together :people_holding_hands: a wonderful ride! :balloon:

Check out below how you can start using Avalanche! :point_down:

Quick Example

import torch
from torch.nn import CrossEntropyLoss
from torch.optim import SGD

from avalanche.benchmarks.classic import PermutedMNIST
from avalanche.evaluation import EvalProtocol
from avalanche.evaluation.metrics import ACC
from avalanche.extras.models import SimpleMLP
from avalanche.training.strategies import Naive

# Config
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# model
model = SimpleMLP(num_classes=10)

# CL Benchmark Creation
perm_mnist = PermutedMNIST(n_experiences=3)
train_stream = perm_mnist.train_stream
test_stream = perm_mnist.test_stream

# Prepare for training & testing
optimizer = SGD(model.parameters(), lr=0.001, momentum=0.9)
criterion = CrossEntropyLoss()

# Continual learning strategy
cl_strategy = Naive(
    model, optimizer, criterion, train_mb_size=32, train_epochs=2,
    eval_mb_size=32, device=device)

# train and test loop
results = []
for train_task in train_stream:
    cl_strategy.train(train_task, num_workers=4)

Current Release

Avalanche is a framework in constant development. Thanks to the support of the ContinualAI community and its active members we are quickly extending its features and improve its usability based on the demands of our research community!

A the moment, Avalanche is in Alpha v0.0.1, but we already support a number of Benchmarks, Strategies and Metrics, that makes it, we believe, the best tool out there for your continual learning research! 💪

Please note that, at the moment, we do not support stable releases and packaged versions of the library.
We do this intentionally as in this early phase we would like to stimulate contributions only from experienced CL researchers and coders.

Getting Started

We know that learning a new tool may be tough at first. This is why we made Avalanche as easy as possible to learn with a set of resources that will help you along the way.
For example, you may start with our 5-minutes guide that will let you acquire the basics about Avalanche and how you can use it in your research project:

We have also prepared for you a large set of examples & snippets you can plug-in directly into your code and play with:

Having completed these two sections, you will already feel with superpowers ⚡, this is why we have also created an in-depth tutorial that will cover all the aspect of Avalanche in
details and make you a true Continual Learner! :woman_student:

Cite Avalanche

If you used Avalanche in your research project, please remember to cite our white paper.
This will help us make Avalanche better known in the machine learning community, ultimately making a better tool for everyone:

   title = {Avalanche: an End-to-End Library for Continual Learning},
   author = {...},
   journal = {Arxiv preprint arXiv:xxxx.xxxx},
   year = {2021}