AWS Glue PySpark – Apache Hudi Quick Start Guide


This is a quick start guide for the Apache Hudi Python Spark connector, running on AWS Glue.

It’s also specifically configured for the following Glue version:

  • AWS Glue 3.0
    • Spark 3.1.1
    • Python 3.7

Glue Configuration Reference:

Apache Hudi Reference: for more information


- Python 3.6 or higher
- AWS CLI - Profile named 'dev' with Administrator Access (

Folder Structure:

├── cloud-formation
│   ├──
│   └── GlueJobPySparkHudi.yaml
├── jars
│   ├──
│   ├── hudi-spark3-bundle_2.12-0.9.0.jar
│   └── spark-avro_2.12-3.0.1.jar
├── job
│   ├──
│   └──
│   └──
├── requirements.txt

Step 1: Create and activate a virtualenv:

Create a new virtual environment for the project in its root directory:

python3 -m venv venv

Activate it:

source venv/bin/activate

Run from the root directory the pip install to get boto3.

pip install -r requirements.txt

Step 2: Create the AWS Resources:

Now, with a aws configured profile named as dev, cd into the cloud-formation folder and run the command in

As a AWS Cloud Formation exercise, read the command Parameters and how they are used on the GlueJobPySparkHudi.yaml file to dynamically create the Glue Job and S3 Bucket.

Step 3: Upload the Job and Jars to S3:

cd into the job folder and run the command in

cd into the jars folder and run the commands in Note: There is one command for each jar.

Step 4: Check AWS Resources results:

Log into aws console and check the Glue Job and S3 Bucket.

On the AWS Glue console, you can run the Glue Job by clicking on the job name.

After the job is finished, you can check the Glue Data Catalog and query the new database from AWS Athena.

On AWS Athena check for the database: hudi_demo and for the table: hudi_trips.


View Github