Code for the paper “Benchmarking and Analyzing Point Cloud Classification under Corruptions”. For the latest updates, see:

Benchmarking and Analyzing Point Cloud Classification under Corruptions
Jiawei Ren, Liang Pan, Ziwei Liu

arXiv 2022


ModelNet-C [Download Link]

Get Started

Step 0. Clone the Repo

git clone
cd ModelNet-C

Step 1. Set Up the Environment

Set up the environment by:

conda create --name modelnetc python=3.7.5
conda activate modelnetc
pip install -r requirements.txt
cd SimpleView/pointnet2_pyt && pip install -e . && cd -
pip install -e modelnetc_utils

Step 2. Prepare Data

Download ModelNet-C by:

cd data
unzip && cd ..

Alternatively, you may download ModelNet40-C manually and extract it under data.

Step 3. Download Pretrained Models

Download pretrained models by


Alternatively, you may download pretrained models manually and extract it under root directory.

Benchmark on ModelNet-C

Evaluation Commands

Evaluation commands are provided in

Benchmark Results

Method Reference Standalone mCE Clean OA
DGCNN Wang et al. Yes 1.000 0.926
PointNet Qi et al. Yes 1.422 0.907
PointNet++ Qi et al. Yes 1.072 0.930
RSCNN Liu et al. Yes 1.130 0.923
SimpleView Goyal et al. Yes 1.047 0.939
GDANet Xu et al. Yes 0.892 0.934
CurveNet Xiang et al. Yes 0.927 0.938
PAConv Xu et al. Yes 1.104 0.936
PCT Guo et al. Yes 0.925 0.930
RPC Ren et al. Yes 0.863 0.930
DGCNN+PointWOLF Kim et al. No 0.814 0.926
DGCNN+RSMix Lee et al. No 0.745 0.930
DGCNN+WOLFMix Ren et al. No 0.590 0.932
GDANet+WOLFMix Ren et al. No 0.571 0.934

*Standalone indicates if the method is a standalone architecture or a combination with augmentation or pretrain.


  • PointMixup
  • OcCo
  • PointBERT

Cite ModelNet-C

    title={Benchmarking and Analyzing Point Cloud Classification under Corruptions},
    author={Jiawei Ren and Liang Pan and Ziwei Liu},


This codebase heavily borrows codes from the following repositories: