stagewise-knowledge-distillation

This repository presents the code implementation for Stagewise Knowledge Distillation, a technique for improving knowledge transfer between a teacher model and student model.

Requirements

  • Install the dependencies using conda with the requirements.yml file

    conda env create -f environment.yml
    
  • Setup the stagewise-knowledge-distillation package itself

    pip install -e .
    
  • Apart from the above mentioned dependencies, it is recommended to have an Nvidia GPU (CUDA compatible) with at least 8 GB of video memory (most of the experiments will work with 6 GB also). However, the code works with CPU only machines as well.

Image Classification

Introduction

In this work, ResNet architectures are used. Particularly, we used ResNet10, 14, 18, 20 and 26 as student networks and ResNet34 as the teacher network. The datasets used are CIFAR10, Imagenette and Imagewoof. Note that Imagenette and Imagewoof are subsets of ImageNet.

Preparation

  • Before any experiments, you need to download the data and saved weights of teacher model to appropriate locations.
  • The following script
    • downloads the datasets

    • saves 10%, 20%, 30% and 40% splits of each dataset separately

    • downloads teacher model weights for all 3 datasets

      assuming you are in the root folder of the repository

      cd image_classification/scripts
      bash setup.sh

Experiments

For detailed information on the various experiments, refer to the paper. In all the image classification experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : imagenette, imagewoof, cifar10
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full Imagenette dataset, ResNet10

python3 no_teacher.py -d imagenette -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% Imagewoof dataset, ResNet18

python3 traditional_kd.py -d imagewoof -m resnet18 -p 20 -e 100 -s 0

FSP KD

30% CIFAR10 dataset, ResNet14

python3 fsp_kd.py -d cifar10 -m resnet14 -p 30 -e 100 -s 0

Attention Transfer KD

10% Imagewoof dataset, ResNet26

python3 attention_transfer_kd.py -d imagewoof -m resnet26 -p 10 -e 100 -s 0

Hinton KD

Full CIFAR10 dataset, ResNet14

python3 hinton_kd.py -d cifar10 -m resnet14 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% Imagenette dataset, ResNet20

python3 simultaneous_kd.py -d imagenette -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

Full CIFAR10 dataset, ResNet10

python3 stagewise_kd.py -d cifar10 -m resnet10 -e 100 -s 0

Semantic Segmentation

Introduction

In this work, ResNet backbones are used to construct symmetric U-Nets for semantic segmentation. Particularly, we used ResNet10, 14, 18, 20 and 26 as the backbones for student networks and ResNet34 as the backbone for the teacher network. The dataset used is the Cambridge-driving Labeled Video Database (CamVid).

Preparation

  • The following script
    • downloads the data (and shifts it to appropriate folder)

    • saves 10%, 20%, 30% and 40% splits of each dataset separately

    • downloads the pretrained teacher weights in appropriate folder

      assuming you are in the root folder of the repository

      cd semantic_segmentation/scripts
      bash setup.sh

Experiments

For detailed information on the various experiments, refer to the paper. In all the semantic segmentation experiments, the following common training arguments are listed with the possible values they can take:

  • dataset (-d) : camvid
  • model (-m) : resnet10, resnet14, resnet18, resnet20, resnet26, resnet34
  • number of epochs (-e) : Integer is required
  • percentage of dataset (-p) : 10, 20, 30, 40 (don't use this argument at all for full dataset experiments)
  • random seed (-s) : Give any random seed (for reproducibility purposes)
  • gpu (-g) : Don't use unless training on CPU (in which case, use -g 'cpu' as the argument). In case of multi-GPU systems, run CUDA_VISIBLE_DEVICES=id in the terminal before the experiment, where id is the ID of your GPU according to nvidia-smi output.
  • Comet ML API key (-a) (optional) : If you want to use Comet ML for tracking your experiments, then either put your API key as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.
  • Comet ML workspace (-w) (optional) : If you want to use Comet ML for tracking your experiments, then either put your workspace name as the argument or make it the default argument in the arguments.py file. Otherwise, no need of using this argument.

Note: Currently, there are no plans for adding Attention Transfer KD and FSP KD experiments for semantic segmentation.

In the following subsections, example commands for training are given for one experiment each.

No Teacher

Full CamVid dataset, ResNet10

python3 pretrain.py -d camvid -m resnet10 -e 100 -s 0

Traditional KD (FitNets)

20% CamVid dataset, ResNet18

python3 traditional_kd.py -d camvid -m resnet18 -p 20 -e 100 -s 0

Simultaneous KD (Proposed Baseline)

40% CamVid dataset, ResNet20

python3 simultaneous_kd.py -d camvid -m resnet20 -p 40 -e 100 -s 0

Stagewise KD (Proposed Method)

10 % CamVid dataset, ResNet10

python3 stagewise_kd.py -d camvid -m resnet10 -p 10 -e 100 -s 0

Citation

If you use this code or method in your work, please cite using

@misc{kulkarni2020data,
      title={Data Efficient Stagewise Knowledge Distillation}, 
      author={Akshay Kulkarni and Navid Panchi and Sharath Chandra Raparthy and Shital Chiddarwar},
      year={2020},
      eprint={1911.06786},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

GitHub

https://github.com/IvLabs/stagewise-knowledge-distillation