Determined helps deep learning teams train models more quickly, easily share GPU resources, and effectively collaborate. Determined allows deep learning engineers to focus on building and training models at scale, without needing to worry about DevOps or writing custom code for common tasks like fault tolerance or experiment tracking.

You can think of Determined as a platform that bridges the gap between tools like TensorFlow and PyTorch --- which work great for a single researcher with a single GPU --- to the challenges that arise when doing deep learning at scale, as teams, clusters, and data sets all increase in size.

Key Features

  • high-performance distributed training without any additional changes to
    your model code
  • intelligent hyperparameter optimization based on cutting-edge research
  • flexible GPU scheduling, including dynamically resizing training jobs
    on-the-fly and automatic management of cloud resources on AWS and GCP
  • built-in experiment tracking, metrics storage, and visualization
  • automatic fault tolerance for DL training jobs
  • integrated support for TensorBoard and GPU-powered Jupyter notebooks

To use Determined, you can continue using popular DL frameworks such as
TensorFlow and PyTorch; you just need to modify your model code to implement
the Determined API.


Try Now on AWS

Try Now

Next Steps

For a brief introduction to using Determined, start with the
Quick Start Guide.

To port an existing deep learning model to Determined, follow the
tutorial for your preferred deep learning framework:


The documentation for the latest version of Determined can always be found