/ Machine Learning

Efficient Dialogue State Tracking by Selectively Overwriting Memory

Efficient Dialogue State Tracking by Selectively Overwriting Memory

SOM-DST

This code is the official pytorch implementation of Efficient Dialogue State Tracking by Selectively Overwriting Memory.

Requirements

python3.6
pytorch-transformers==1.0.0
torch==1.3.0a0+24ae9b5
wget==3.2

Download and Preprocessing data

To download the MultiWOZ dataset and preprocess it, please run this script first.

You can choose the version of the dataset. ('2.1', '2.0')

The downloaded original dataset will be located in $DOWNLOAD_PATH, and after preprocessing, it will be located in $TARGET_PATH.

python3 create_data.py --main_dir $DOWNLOAD_PATH --target_path $TARGET_PATH --mwz_ver '2.1' # or '2.0'

Model Training

To train the SOM-DST model, please run this script.

$DATASET_DIR is the root directory of the preprocessed dataset, and $SAVE_DIR is output directory that best_model's checkpoint will be saved.

This script contains the downloading process of pretrained-BERT checkpoint depending on --bert_ckpt_path. --bert_ckpt_path should contain either base or large.

python3 train.py --data_root $DATASET_DIR --save_dir $SAVE_DIR --bert_ckpt_path `bert-base-uncased-pytorch_model.bin --op_code '4'`

You can choose the operation set from various options via --op_code. The default setting is '4'.

OP_SET = {
    '2': {'update': 0, 'carryover': 1},
    '3-1': {'update': 0, 'carryover': 1, 'dontcare': 2},
    '3-2': {'update': 0, 'carryover': 1, 'delete': 2},
    '4': {'delete': 0, 'update': 1, 'dontcare': 2, 'carryover': 3},
    '6': {'delete': 0, 'update': 1, 'dontcare': 2, 'carryover': 3, 'yes': 4, 'no': 5}
}

Model Evaluation

If you want to evaluate the already trained model, you can run this script.

$MODEL_PATH is the checkpoint of the model used for evaluation, and $DATASET_DIR is the root directory of the preprocessed dataset.

You can download the pretrained SOM-DST model from here.

python3 evaluation.py --model_ckpt_path $MODEL_PATH --data_root $DATASET_DIR
--gt_op: give the ground-truth operation for the evaluation.
--gt_p_state: give the ground-truth previous dialogue state for the evaluation.
--gt_gen: give the ground-truth generation for the evaluation.
--eval_all: evaluate all combinations of these.

Sample output of evaluation

------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 0 joint accuracy :  0.5309446254071661
Epoch 0 slot turn accuracy :  0.9736020629749801
Epoch 0 slot turn F1:  0.9171910941855902
Epoch 0 op accuracy :  0.9741675714802285
Epoch 0 op F1 :  {'delete': 0.030501089324618733, 'update': 0.7959107608753526, 'dontcare': 0.3029556650246305, 'carryover': 0.9864975897034028}
Epoch 0 op hit count :  {'delete': 21, 'update': 7474, 'dontcare': 123, 'carryover': 207712}
Epoch 0 op all count :  {'delete': 1341, 'update': 10745, 'dontcare': 624, 'carryover': 208330}
Final Joint Accuracy :  0.37037037037037035
Final slot turn F1 :  0.9108339131790647
Latency Per Prediction : 24.461546 ms
-----------------------------

hotel 0.5154559505409583 0.973776403915519
train 0.7171922685656155 0.9874646772917451
restaurant 0.6596113809854268 0.9857737682165246
attraction 0.66872174270448 0.9873270311001585
taxi 0.5903426791277259 0.9803219106957396

Main results on MultiWOZ dataset (Joint Goal Accuracy)

Model MultiWOZ 2.0 MultWOZ 2.1
SOM-DST Base 51.72 53.01
SOM-DST Large 52.32 53.68

Citation

@inproceedings{kim2020somdst,
  title={Efficient Dialogue State Tracking by Selectively Overwriting Memory},
  author={Kim, Sungdong and Yang, Sohee and Kim, Gyuwan and Lee, Sang-woo},
  booktitle={ACL},
  year={2020}
}

GitHub

Comments