License
Framework

This repo contains the official implementation of the paper:



End-to-End Referring Video Object Segmentation with Multimodal Transformers

MTTR_preview.mp4


How to Run the Code

First, clone this repo to your local machine using:

git clone https://github.com/mttr2021/MTTR.git

Dataset Requirements

A2D-Sentences

Follow the instructions here to download the dataset.
Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are
shown):

MTTR/
└── a2d_sentences/ 
    ├── Release/
    │   ├── videoset.csv  (videos metadata file)
    │   └── CLIPS320/
    │       └── *.mp4     (video files)
    └── text_annotations/
        ├── a2d_annotation.txt  (actual text annotations)
        ├── a2d_missed_videos.txt
        └── a2d_annotation_with_instances/ 
            └── */ (video folders)
                └── *.h5 (annotations files) 

JHMDB-Sentences

Follow the instructions here to download the dataset.
Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are
shown):

MTTR/
└── jhmdb_sentences/ 
    ├── Rename_Images/  (frame images)
    │   └── */ (action dirs)
    ├── puppet_mask/  (mask annotations)
    │   └── */ (action dirs)
    └── jhmdb_annotation.txt  (text annotations)

Refer-YouTube-VOS

Download the dataset from the competition’s website here.

Note that you may be required to sign up to the competition in order to get access to the dataset.
This registration process is free and short.

Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are
shown):

MTTR/
└── refer_youtube_vos/ 
    ├── train/
    │   ├── JPEGImages/
    │   │   └── */ (video folders)
    │   │       └── *.jpg (frame image files) 
    │   └── Annotations/
    │       └── */ (video folders)
    │           └── *.png (mask annotation files) 
    ├── valid/
    │   └── JPEGImages/
    │       └── */ (video folders)
    │           └── *.jpg (frame image files) 
    └── meta_expressions/
        ├── train/
        │   └── meta_expressions.json  (text annotations)
        └── valid/
            └── meta_expressions.json  (text annotations)

Environment Installation

The code was tested on a Conda environment installed on Ubuntu 18.04.
Install Conda and then create an environment as follows:

conda create -n mttr python=3.9.7 pip -y

conda activate mttr

  • Pytorch 1.10:

conda install pytorch==1.10.0 torchvision==0.11.1 -c pytorch -c conda-forge

Note that you might have to change the cudatoolkit version above according to your system’s CUDA version.

  • Hugging Face transformers 4.11.3:

pip install transformers==4.11.3

  • COCO API (for mAP calculations):

pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

  • Additional required packages:

pip install h5py wandb opencv-python protobuf av einops ruamel.yaml timm joblib

conda install -c conda-forge pandas matplotlib cython scipy cupy

Running Configuration

The following table lists the parameters which can be configured directly from the command line.

The rest of the running/model parameters for each dataset can be configured in configs/DATASET_NAME.yaml.

Note that in order to run the code the path of the relevant .yaml config file needs to be supplied using the -c parameter.

Command Description
-c path to dataset configuration file
-rm running mode (train/eval)
-ws window size
-bs training batch size per GPU
-ebs eval batch size per GPU (if not provided, training batch size is used)
-ng number of GPUs to run on

Evaluation

The following commands can be used to reproduce the main results of our paper using the supplied checkpoint files.

The commands were tested on RTX 3090 24GB GPUs, but it may be possible to run some of them using GPUs with less
memory by decreasing the batch-size -bs parameter.

A2D-Sentences

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 46.1
8 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 44.7

JHMDB-Sentences

The following commands evaluate our A2D-Sentences-pretrained model on JHMDB-Sentences without additional training.

For this purpose, as explained in our paper, we uniformly sample three frames from each video. To ensure proper
reproduction of our results on other machines we include the metadata of the sampled frames under
datasets/jhmdb_sentences/jhmdb_sentences_samples_metadata.json.
This file is automatically loaded during the evaluation process with the commands below.

To avoid using this file and force sampling different frames, change the seed and generate_new_samples_metadata
parameters under MTTR/configs/jhmdb_sentences.yaml.

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 39.2
8 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 36.6

Refer-YouTube-VOS

The following command evaluates our model on the public validation subset of Refer-YouTube-VOS dataset.
Since annotations are not publicly available for this subset, our code generates a zip file with the predicted masks
under MTTR/runs/[RUN_DATE_TIME]/validation_outputs/submission_epoch_0.zip. This zip needs to be uploaded to the
competition server for evaluation. For your convenience we supply this zip file here as well.

Window Size Command Checkpoint File Output Zip J&F Result
12 python main.py -rm eval -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ckpt CHECKPOINT_PATH -ng 8 Link Link 55.32

Training

First, download the Kinetics-400 pretrained weights of Video Swin Transformer from this link.
Note that these weights were originally published in video swin’s original repo
here.

Place the downloaded file inside your cloned repo directory as
MTTR/pretrained_swin_transformer/swin_tiny_patch244_window877_kinetics400_1k.pth.

Next, the following commands can be used to train MTTR as described in our paper.

Note that it may be possible to run some of these commands on GPUs with less memory than the ones mentioned below
by decreasing the batch-size -bs or window-size -ws parameters. However, changing these parameters may also affect
the final performance of the model.

A2D-Sentences

  • The command for the following configuration was tested on 2 A6000 48GB GPUs:
Window Size Command
10 python main.py -rm train -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ng 2
  • The command for the following configuration was tested on 3 RTX 3090 24GB GPUs:
Window Size Command
8 python main.py -rm train -c configs/a2d_sentences.yaml -ws 8 -bs 2 -ng 3

Refer-YouTube-VOS

  • The command for the following configuration was tested on 4 A6000 48GB GPUs:
Window Size Command
12 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ng 4
  • The command for the following configuration was tested on 8 RTX 3090 24GB GPUs.
Window Size Command
8 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 8 -bs 1 -ng 8

Note that this last configuration was not mentioned in our paper.
However, it is more memory efficient than the original configuration (window size 12) while producing a model
which is almost as good (J&F of 54.56 in our experiments).

JHMDB-Sentences

As explained in our paper JHMDB-Sentences is used exclusively for evaluation, so training is not supported at this time
for this dataset.

GitHub

View Github