Item2Vec Wrapped

Gensim 4.x and sklearn

  1. Introduction
  2. General informations
  3. Methods Description
  4. GridSearch and BayesSearch Usage
  5. BayesSearch Example

1. Introduction

Prod2Vec or Item2Vec produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. It’s based on NLP model Word2Vec. Click here to know more

This project provide a class that encapsulates Item2Vec model (word2vec gensim model) as a sklearn estimator.

It allows the simple and efficient use of the Item2Vec model by providing :

2. General informations

!! Warning : Estimators template is not respected since X does not have the shape (n_features, n_examples)

2.1 Input data format

X : list of string list. Each string is an item. Each list is the sequence of products purchased 
by a customer/while a session
X = [['prod_1', ..., 'prod_n'], ... ,['prod_1', ..., 'prod_n']]

2.2 Train/Test split

The train/test split is managed within the class. It is not necessary to split the data into train and test before fitting the model.

2.3 Pipeline performance measurement

  • Training on subset of X
  • Randomly sampled ((n-1)-th, n-th) pairs of items, disjoint from the training set
  • Evaluate performance on NEP task (ie: Find the top 10 most similar to the (n-1)-th item and check if the (n-th) item is in this top 10)

3. Methods description

3.1 Instanciation and init parameters

Instanciation :

Item2VecWrapped(alpha=0.025, cbow_mean=1, epochs=5,hs=0, min_alpha=0.0001, min_count=1, negative=5, ns_exponent=-0.5, 
sample=0.001, seed=1, sg=0, vector_size=100, window=3, shrink_windows=True,topK=10, split_strategy="timeseries")

Word2Vec default Parameters (Gensim 4.x)

alpha=0.025, cbow_mean=1, epochs=5,hs=0, min_alpha=0.0001, min_count=1, negative=5, 
ns_exponent=-0.5, sample=0.001, seed=1, sg=0, vector_size=100, window=3, shrink_windows=True,

Added parameters :

topK=int, split_strategy=string

topK : most similar word to a given word. (10 by default)

split_strategy : “timeseries” or “train_test_split”

"timeseries" : Training set -> (item_1, ..., item_N-1)
               Test set -> (item_N-1, item_N)

"train_test_split" : Training set, Test set = train_test_split(X, test_size=0.05, random_state=42)
                     Create couple (item_N-1, item_N) from Test_test

3.2 Fit method

fit(X)
  • Getting X_train data (depending on splitting strategy) to train the gensim Word2Vec model
  • Train Word2Vec model on X_train

3.3 Predict method

predict(X)
  • X is a word or a list of words
  • Predict topK most similar words using cosine similarity.

Return a list of list of topK words by index

3.4 Score method (not using it outside the classe)

score(X)

X must be the same as the one provide to fit()

Designed for the GridSearchCV and BayesSearch. Use score_Precision_at_K(X_test,Y_test) instead.

Evaluate performance on Next Event Prediction using [email protected]

Return : The score in pecentage of right prediction

3.5 Score_Precision_at_K method

score_Precision_at_K(X_test, Y_test)

Evaluate performance on Next Event Prediction using [email protected]

X_test : list of items

Y_test : list of items. Ground truth about the next item purchases just after X_test

Return : The score in pecentage of right prediction

3.6 Get_vocabulary method

get_vocabulary()

Return : list of vocabulary after the training.

Word2Vec().fit(X).get_vocabulary()[idx] will return word at index idx.

3.7 Get_index_word method

get_index_word(word)

Return : Index of the given word

4. GridSearch and BayesSearch Usage

Model instantation

my_model = Item2VecWrapped()

Hyperparameters definition

parameters = {'ns_exponent': [1, 0.5, -0.5, -1], 'alpha': [0.1, 0.3, 0.6, 0.9]}

Define Train and test indices for splitting.
!! Test and train indices must be the same !! The split is managed internally

train_indices = [i for i in range(len(X))]
test_indices = [i for i in range(len(X))]

cv = [(train_indices, test_indices)]

Instantiate GridSearchCV

clf = GridSearchCV(my_model,parameters, cv=cv)

Fit the model and getting best parameters and best scores

clf.fit(X)

clf.best_params_

clf.best_score_

5. BayesSearch Example

!pip install scikit-optimize

from skopt.space import Integer
from skopt.space import Real
from skopt.space import Categorical
from skopt.utils import use_named_args
from skopt import BayesSearchCV

search_space = list()
search_space.append(Integer(3, 100, name='epochs', prior='log-uniform', base=2))
search_space.append(Integer(10, 500, name='vector_size', prior='log-uniform', base=2))
search_space.append(Real(0.01, 1, name='alpha', prior='uniform'))
search_space.append(Real(-1, 1, name='ns_exponent', prior='uniform'))
search_space.append(Integer(5, 50, name='negative', prior='uniform'))
search_space.append(Categorical([0, 1], name='sg'))
search_space.append(Real(0.00001, 0.01, name='sample', prior='uniform'))
search_space.append(Categorical([0, 1], name='cbow_mean'))
search_space.append(Integer(1,3, name='window', prior='uniform')) #mean of basket len is 1.54
search_space.append(Categorical([True, False], name='shrink_windows'))


params = {search_space[i].name : search_space[i] for i in range((len(search_space)))}

train_indices = [i for i in range(len(X))]  # indices for training
test_indices = [i for i in range(len(X))]  # indices for testing

cv = [(train_indices, test_indices)]


clf = BayesSearchCV(estimator=Item2VecWrapped(), search_spaces=params, n_jobs=-1, cv=cv)

clf.fit(X)

clf.best_params_

clf.best_score_

GitHub

View Github