/ Machine Learning

Learning to Coordinate Manipulation Skills via Skill Behavior Diversification

Learning to Coordinate Manipulation Skills via Skill Behavior Diversification

coordination

Learning to Coordinate Manipulation Skills via Skill Behavior Diversification (ICLR 2020)

This project is a PyTorch implementation of Learning to Coordinate Manipulation Skills via Skill Behavior Diversification, which is published in ICLR 2020.

teaser

When mastering a complex manipulation task, humans often decompose the task into sub-skills of their body parts, practice the sub-skills independently, and then execute the sub-skills together. Similarly, a robot with multiple end-effectors can perform a complex task by coordinating sub-skills of each end-effector. To realize temporal and behavioral coordination of skills, we propose a modular framework that first individually trains sub-skills of each end-effector with skill behavior diversification, and learns to coordinate end-effectors using diverse behaviors of the skills.

Prerequisites

  • Ubuntu 18.04
  • Python 3.6
  • Mujoco 2.0

Installation

  1. Install Mujoco 2.0 and add the following environment variables into ~/.bashrc or ~/.zshrc
# Download mujoco 2.0
$ wget https://www.roboti.us/download/mujoco200_linux.zip -O mujoco.zip
$ unzip mujoco.zip -d ~/.mujoco
$ mv ~/.mujoco/mujoco200_linux ~/.mujoco/mujoco200

# Copy mujoco license key `mjkey.txt` to `~/.mujoco`

# Add mujoco to LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco200/bin

# For GPU rendering (replace 418 with your nvidia driver version)
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-418

# Only for a headless server
$ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so:/usr/lib/nvidia-418/libGL.so
  1. Install python dependencies
# Run the next line for installing packages
$ sudo apt-get install libgl1-mesa-dev libgl1-mesa-glx libosmesa6-dev patchelf libopenmpi-dev libglew-dev python3-pip python3-numpy python3-scipy

# Install python packages
$ pip3 install -r requirements.txt

# Add wandb API key (get one from https://wandb.com)
$ wandb login WANDB_API_KEY

Mujoco GPU rendering

To use GPU rendering for mujoco, you need to add /usr/lib/nvidia-000 (000 should be replaced with your NVIDIA driver version) to LD_LIBRARY_PATH before installing mujoco-py.
Then, during mujoco-py compilation, it will show you linuxgpuextension instead of linuxcpuextension.
In Ubuntu 18.04, you may encounter an GL-related error while building mujoco-py, open venv/lib/python3.6/site-packages/mujoco_py/gl/eglshim.c and comment line 5 #include <GL/gl.h> and line 7 #include <GL/glext.h>.

Virtual display on headless machines

On servers, you don’t have a monitor. Use this to get a virtual monitor for rendering and put DISPLAY=:1 in front of a command.

# Run the next line for Ubuntu
$ sudo apt-get install xserver-xorg libglu1-mesa-dev freeglut3-dev mesa-common-dev libxmu-dev libxi-dev

# Configure nvidia-x
$ sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024

# Launch a virtual display
$ sudo /usr/bin/X :1 &

# Run a command with DISPLAY=:1
DISPLAY=:1 <command>

How to run experiments

  1. Launch a virtual display (only for a headless server)
sudo /usr/bin/X :1 &
  1. Train primitives
  • Jaco Pick-Push-Place and Jaco Bar-Moving
# With Skill Behavior Diversification (SBD)
python3 -m rl.main --env two-jaco-pick-v0 --gpu 0 --prefix right-d --seed 1 --subdiv right_arm,right_hand,cube2-right_arm --env_args train_right-True/train_left-False --discriminator_loss_weight 10 --save_qpos True --max_global_step 300000
python3 -m rl.main --env two-jaco-pick-v0 --gpu 0 --prefix left-d --seed 1 --subdiv left_arm,left_hand,cube1-left_arm --env_args train_right-False/train_left-True --discriminator_loss_weight 10 --save_qpos True --max_global_step 300000
python3 -m rl.main --env two-jaco-place-v0 --gpu 0 --prefix right-center-d --seed 1 --subdiv right_arm,right_hand,cube2-right_arm --env_args train_right-True/train_left-False --discriminator_loss_weight 10 --save_qpos True --init_qpos_dir log/rl.two-jaco-pick-v0.right-d.1/video --max_global_step 300000
python3 -m rl.main --env two-jaco-place-v0 --gpu 0 --prefix right-side-d --seed 1 --subdiv right_arm,right_hand,cube2-right_arm --env_args train_right-True/train_left-False/dest_center-False --save_qpos True --init_qpos_dir log/rl.two-jaco-pick-v0.right-d.1/video --max_global_step 300000
python3 -m rl.main --env two-jaco-place-v0 --gpu 0 --prefix left-side-d --seed 1 --subdiv left_arm,left_hand,cube1-left_arm --env_args train_right-False/train_left-True/dest_center-False --save_qpos True --init_qpos_dir log/rl.two-jaco-pick-v0.left-d.1/video --max_global_step 300000
python3 -m rl.main --env two-jaco-push-v0 --gpu 0 --prefix left-d --seed 1 --subdiv left_arm,left_hand,cube1-left_arm --env_args train_left-True/train_right-False --discriminator_loss_weight 10 --save_qpos True --max_global_step 300000

# Without SBD
python3 -m rl.main --env two-jaco-pick-v0 --gpu 0 --prefix right-n --seed 1 --subdiv right_arm,right_hand,cube2-right_arm --env_args train_right-True/train_left-False --diayn False --save_qpos True --max_global_step 300000
python3 -m rl.main --env two-jaco-pick-v0 --gpu 0 --prefix left-n --seed 1 --subdiv left_arm,left_hand,cube1-left_arm --env_args train_right-False/train_left-True --diayn False --save_qpos True --max_global_step 300000
python3 -m rl.main --env two-jaco-place-v0 --gpu 0 --prefix right-center-n --seed 1 --subdiv right_arm,right_hand,cube2-right_arm --env_args train_right-True/train_left-False --diayn False --save_qpos True --init_qpos_dir log/rl.two-jaco-pick-v0.right-n.1/video --max_global_step 300000
python3 -m rl.main --env two-jaco-place-v0 --gpu 0 --prefix right-side-n --seed 1 --subdiv right_arm,right_hand,cube2-right_arm --env_args train_right-True/train_left-False/dest_center-False --diayn False --save_qpos True --init_qpos_dir log/rl.two-jaco-pick-v0.right-n.1/video --max_global_step 300000
python3 -m rl.main --env two-jaco-place-v0 --gpu 0 --prefix left-side-n --seed 1 --subdiv left_arm,left_hand,cube1-left_arm --env_args train_right-False/train_left-True/dest_center-False --diayn False --save_qpos True --init_qpos_dir log/rl.two-jaco-pick-v0.left-n.1/video --max_global_step 300000
python3 -m rl.main --env two-jaco-push-v0 --gpu 0 --prefix left-n --seed 1 --subdiv left_arm,left_hand,cube1-left_arm --env_args train_left-True/train_right-False --diayn False --save_qpos True --max_global_step 300000
  • Ant Push
# With SBD
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-down-d --env_args ant-1/direction-down --seed 1 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-up-d --env_args ant-1/direction-up --seed 1 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-right-d --env_args ant-1/direction-right --seed 1 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-left-d --env_args ant-1/direction-left --seed 1 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-down-d --env_args ant-2/direction-down --seed 1 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-up-d --env_args ant-2/direction-up --seed 1 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-right-d --env_args ant-2/direction-right --seed 1 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-left-d --env_args ant-2/direction-left --seed 1 --max_global_step 500000

# SBD with different diversity coefficient
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-down-d-005 --env_args ant-1/direction-down --seed 1 --env_args diayn_reward-0.05 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-up-d-005 --env_args ant-1/direction-up --seed 1 --env_args diayn_reward-0.05 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-right-d-005 --env_args ant-1/direction-right --seed 1 --env_args diayn_reward-0.05 --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-left-d-005 --env_args ant-1/direction-left --seed 1 --env_args diayn_reward-0.05 --max_global_step 500000

# Without SBD
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-down-n --env_args ant-1/direction-down --seed 1 --diayn False --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-up-n --env_args ant-1/direction-up --seed 1 --diayn False --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-right-n --env_args ant-1/direction-right --seed 1 --diayn False --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-1-left-n --env_args ant-1/direction-left --seed 1 --diayn False --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-down-n --env_args ant-2/direction-down --seed 1 --diayn False --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-up-n --env_args ant-2/direction-up --seed 1 --diayn False --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-right-n --env_args ant-2/direction-right --seed 1 --diayn False --max_global_step 500000
python3 -m rl.main --env ant-forward-v0 --gpu 0 --prefix ant-2-left-n --env_args ant-2/direction-left --seed 1 --diayn False --max_global_step 500000
  1. Train composite skills
  • Jaco Bar-Moving
# RL baseline
python3 -m rl.main --env two-jaco-bar-moving-v0 --gpu 0 --prefix RL --seed 1 --meta hard --meta_update_target LL --subdiv left_arm,left_hand,right_arm,right_hand,cube1,cube2-left_arm,right_arm --diayn False

# RL with SBD
python3 -m rl.main --env two-jaco-bar-moving-v0 --gpu 0 --prefix RL-SBD --seed 1 --meta hard --meta_update_target both --subdiv left_arm,left_hand,right_arm,right_hand,cube1,cube2-left_arm,right_arm --max_meta_len 1

# MARL baseline
python3 -m rl.main --env two-jaco-bar-moving-v0 --gpu 0 --prefix MARL --seed 1 --meta hard --meta_update_target LL --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --diayn False

# MARL with SBD
python3 -m rl.main --env two-jaco-bar-moving-v0 --gpu 0 --prefix MARL-SBD --seed 1 --meta hard --meta_update_target both --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --max_meta_len 1

# Modular without SBD
python3 -m rl.main --env two-jaco-bar-moving-v0 --gpu 0 --prefix Modular --seed 1 --meta hard --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --subdiv_skills rl.two-jaco-pick-v0.left-n.1,rl.two-jaco-place-v0.left-side-n.1/rl.two-jaco-pick-v0.right-n.1,rl.two-jaco-place-v0.right-side-n.1 --max_meta_len 1 --diayn False

# Modular with SBD (Ours)
python3 -m rl.main --env two-jaco-bar-moving-v0 --gpu 0 --prefix ours --seed 1 --meta hard --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --subdiv_skills rl.two-jaco-pick-v0.left-d.1,rl.two-jaco-place-v0.left-side-d.1/rl.two-jaco-pick-v0.right-d.1,rl.two-jaco-place-v0.right-side-d.1 --max_meta_len 1
  • Jaco Pick-Push-Place
# RL baseline
python3 -m rl.main --env two-jaco-pick-push-place-v0 --gpu 0 --prefix RL --seed 1 --meta hard --meta_update_target LL --subdiv left_arm,left_hand,right_arm,right_hand,cube1,cube2-left_arm,right_arm --diayn False

# RL with SBD
python3 -m rl.main --env two-jaco-pick-push-place-v0 --gpu 0 --prefix RL-SBD --seed 1 --meta hard --meta_update_target both --subdiv left_arm,left_hand,right_arm,right_hand,cube1,cube2-left_arm,right_arm --max_meta_len 1

# MARL baseline
python3 -m rl.main --env two-jaco-pick-push-place-v0 --gpu 0 --prefix MARL --seed 1 --meta hard --meta_update_target LL --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --diayn False

# MARL with SBD
python3 -m rl.main --env two-jaco-pick-push-place-v0 --gpu 0 --prefix MARL-SBD --seed 1 --meta hard --meta_update_target both --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --max_meta_len 1

# Modular without SBD
python3 -m rl.main --env two-jaco-pick-push-place-v0 --gpu 0 --prefix Modular --seed 1 --meta hard --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --subdiv_skills rl.two-jaco-push-v0.left-n.1/rl.two-jaco-pick-v0.right-n.1,rl.two-jaco-place-v0.right-center-n.1 --max_meta_len 1 --diayn False

# Modular with SBD (Ours)
python3 -m rl.main --env two-jaco-pick-push-place-v0 --gpu 0 --prefix ours --seed 1 --meta hard --subdiv left_arm,left_hand,cube1-left_arm/right_arm,right_hand,cube2-right_arm --subdiv_skills rl.two-jaco-push-v0.left-d.1/rl.two-jaco-pick-v0.right-d.1,rl.two-jaco-place-v0.right-center-d.1 --max_meta_len 1
  • Ant Push
# RL baseline
python3 -m rl.main --env ant-push-v0 --gpu 0 --prefix RL --seed 1 --meta hard --meta_update_target LL --subdiv ant_1,box_1,goal_1,ant_2,box_2,goal_2-ant_1,ant_2 --diayn False --max_global_step 4000000 --ckpt_interval 500

# RL with SBD
python3 -m rl.main --env ant-push-v0 --gpu 0 --prefix RL-SBD --seed 1 --meta hard --meta_update_target both --subdiv ant_1,box_1,goal_1,ant_2,box_2,goal_2-ant_1,ant_2 --max_meta_len 5 --max_global_step 4000000 --ckpt_interval 500

# MARL baseline
python3 -m rl.main --env ant-push-v0 --gpu 0 --prefix MARL --seed 1 --meta hard --meta_update_target LL --subdiv ant_1,box_1,goal_1-ant_1/ant_2,box_2,goal_2-ant_2 --diayn False --max_global_step 4000000 --ckpt_interval 500

# MARL with SBD
python3 -m rl.main --env ant-push-v0 --gpu 0 --prefix MARL-SBD --seed 1 --meta hard --meta_update_target both --subdiv ant_1,box_1,goal_1-ant_1/ant_2,box_2,goal_2-ant_2 --max_meta_len 5 --max_global_step 4000000 --ckpt_interval 500

# Modular without SBD
python3 -m rl.main --env ant-push-v0 --gpu 0 --prefix Modular --seed 1 --meta hard --subdiv ant_1,box_1-ant_1/ant_2,box_2-ant_2 --subdiv_skills rl.ant-forward-v0.ant-1-right-n.1,rl.ant-forward-v0.ant-1-left-n.1,rl.ant-forward-v0.ant-1-up-n.1,rl.ant-forward-v0.ant-1-down-n.1/rl.ant-forward-v0.ant-2-right-n.1,rl.ant-forward-v0.ant-2-left-n.1,rl.ant-forward-v0.ant-2-up-n.1,rl.ant-forward-v0.ant-2-down-n.1 --max_meta_len 5 --diayn False --max_global_step 1000000

# Modular with SBD (Ours)
python3 -m rl.main --env ant-push-v0 --gpu 0 --prefix ours --seed 1 --meta hard --subdiv ant_1,box_1-ant_1/ant_2,box_2-ant_2 --subdiv_skills rl.ant-forward-v0.ant-1-right-d.1,rl.ant-forward-v0.ant-1-left-d.1,rl.ant-forward-v0.ant-1-up-d.1,rl.ant-forward-v0.ant-1-down-d.1/rl.ant-forward-v0.ant-2-right-d.1,rl.ant-forward-v0.ant-2-left-d.1,rl.ant-forward-v0.ant-2-up-d.1,rl.ant-forward-v0.ant-2-down-d.1 --max_meta_len 5 --max_global_step 1000000

Directories

The structure of the repository:

  • rl: Reinforcement learning code
  • env: Environment code for simulated experiments (Jaco, Ant)
  • util: Utility code

Log directories:

  • logs/rl.ENV.PREFIX.SEED:
    • cmd.sh: A command used for running a job
    • git.txt: Log gitdiff
    • prarms.json: Summary of parameters
    • video: Generated evaulation videos (every evalute_interval)
    • wandb: Training summary of W&B, like tensorboard summary
    • ckpt_*.pt: Stored checkpoints (every ckpt_interval)
    • replay_*.pt: Stored replay buffers (every ckpt_interval)

Reference

Citation

@inproceedings{lee2020learning,
  title={Learning to Coordinate Manipulation Skills via Skill Behavior Diversification},
  author={Youngwoon Lee and Jingyun Yang and Joseph J. Lim},
  booktitle={International Conference on Learning Representations},
  year={2020},
  url={https://openreview.net/forum?id=ryxB2lBtvH}
}

GitHub

Comments