Model synchronization from dbt to Metabase.

If dbt is your source of truth for database schemas and you use Metabase as your analytics tool, dbt-metabase can propagate table relationships, model and column descriptions and semantic types (e.g. currency, category, URL) to your Metabase data model.


Requires Python 3.6 or above.

Main features

The main features provided by dbt-metabase are:

  • Parsing your dbt project (either through the manifest.json or directly through the YAML files)
  • Triggering a Metabase schema sync before propagating the metadata
  • Propagating table descriptions to Metabase
  • Propagating columns description to Metabase
  • Propagating columns semantic types and visibility types to Metabase through the use of dbt meta fields
  • Propagating table relationships represented as dbt relationships column tests


You can install dbt-metabase from PyPI:

pip install dbt-metabase

Basic Example

Let's start by defining a short sample schema.yml as below.

  - name: stg_users
    description: User records.
      - name: id
        description: Primary key.
          - not_null
          - unique
      - name: email
        description: User's email address.
      - name: group_id
        description: Foreign key to user group.
          - not_null
          - relationships:
              to: ref('groups')
              field: id

  - name: stg_groups
    description: User groups.
      - name: id
        description: Primary key.
          - not_null
          - unique
      - name: name
        description: Group name.

That's already enough to propagate the primary keys, foreign keys and descriptions to Metabase by executing the below command.

dbt-metabase export \
    --dbt_path . \
    --dbt_database business \
    --metabase_host metabase.example.com \
    --metabase_user [email protected] \
    --metabase_password Password123 \
    --metabase_database business \
    --schema public

Check your Metabase instance by going into Settings > Admin > Data Model, you will notice that ID in STG_USERS is now marked as "Entity Key" and GROUP_ID is marked as "Foreign Key" pointing to ID in STG_GROUPS.

Reading your dbt project

There are two approaches provided by this library to read your dbt project:

1. Artifacts

The recommended approach is to instruct dbt-metabase to read your manifest.json, a dbt artifact containing the full representation of your dbt project's resources. If your dbt project uses multiple schemas, multiple databases or model aliases, you must use this approach.

Note that you you have to run dbt compile --target prod or any of the other dbt commands listed in the dbt documentation above to get a fresh copy of your manifest.json. Remember to run it against your production target.

When using the dbt-metabase CLI, you must provide a --dbt_manifest_path argument pointing to your manifest.json file (usually in the target/ folder of your dbt project).

2. Direct parsing

The second alternative is to provide the path to your dbt project root folder using the argument --dbt_path. dbt-metabase will then look for all .yml files and parse your documentation and tests directly from there. It will not support dbt projects with custom schemas.

Semantic Types

Now that we have primary and foreign keys, let's tell Metabase that email column contains email addresses.

Change the email column as follows:

- name: email
  description: User's email address.
    metabase.semantic_type: type/Email

Once you run dbt-metabase export again, you will notice that EMAIL is now marked as "Email".

Here is the list of semantic types (formerly known as special types) currently accepted by Metabase:

  • type/PK
  • type/FK
  • type/AvatarURL
  • type/Category
  • type/City
  • type/Country
  • type/Currency
  • type/Description
  • type/Email
  • type/Enum
  • type/ImageURL
  • type/SerializedJSON
  • type/Latitude
  • type/Longitude
  • type/Number
  • type/State
  • type/URL
  • type/ZipCode
  • type/Quantity
  • type/Income
  • type/Discount
  • type/CreationTimestamp
  • type/CreationTime
  • type/CreationDate
  • type/CancelationTimestamp
  • type/CancelationTime
  • type/CancelationDate
  • type/DeletionTimestamp
  • type/DeletionTime
  • type/DeletionDate
  • type/Product
  • type/User
  • type/Source
  • type/Price
  • type/JoinTimestamp
  • type/JoinTime
  • type/JoinDate
  • type/Share
  • type/Owner
  • type/Company
  • type/Subscription
  • type/Score
  • type/Title
  • type/Comment
  • type/Cost
  • type/GrossMargin
  • type/Birthdate

If you notice new ones, please submit a PR to update this readme.

Visibility Types

In addition to semantic types, you can optionally specify visibility for each field. This affects whether or not they are displayed in the Metabase UI.

Here is how you would hide that same email:

- name: email
  description: User's email address.
    metabase.semantic_type: type/Email
    metabase.visibility_type: sensitive

Here are the visibility types supported by Metabase:

  • normal (default)
  • details-only
  • sensitive
  • hidden (supported but not reflected in the UI)
  • retired (supported but not reflected in the UI)

If you notice new ones, please submit a PR to update this readme.

Database Sync

By default, dbt-metabase will tell Metabase to synchronize database fields and wait for the data model to contain all the tables and columns in your dbt project.

You can control this behavior with two arguments:

  • --metabase_sync_skip - boolean to optionally disable pre-synchronization
  • --metabase_sync_timeout - number of seconds to wait and re-check data model before giving up

Programmatic Invocation

As you have already seen, you can invoke dbt-metabase from the command line. But if you prefer to call it from your code, here's how to do it:

import dbtmetabase