LED2-Net

This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering".

You can visit our project website and upload your own panorama to see the 3D results!

Prerequisite

This repo is primarily based on PyTorch. You can use the follwoing command to intall the dependencies.

pip install -r requirements.txt

Preparing Training Data

Under LED2Net/Dataset, we provide the dataloader of Matterport3D and Realtor360. The annotation formats of the two datasets follows PanoAnnotator. The detailed description of the format is explained in LayoutMP3D.

Under config/, config_mp3d.yaml and config_realtor360.yaml are the configuration file for Matterport3D and Realtor360.

Matterport3D

To train/val on Matterport3D, please modify the two items in config_mp3d.yaml.

dataset_image_path: &dataset_image_path '/path/to/image/location'
dataset_label_path: &dataset_label_path '/path/to/label/location'

The dataset_image_path and dataset_label_path follow the folder structure:

  dataset_image_path/
  |-------17DRP5sb8fy/
          |-------00ebbf3782c64d74aaf7dd39cd561175/
                  |-------color.jpg
          |-------352a92fb1f6d4b71b3aafcc74e196234/
                  |-------color.jpg
          .
          .
  |-------gTV8FGcVJC9/
          .
          .
  dataset_label_path/
  |-------mp3d_train.txt
  |-------mp3d_val.txt
  |-------mp3d_test.txt
  |-------label/
          |-------Z6MFQCViBuw_543e6efcc1e24215b18c4060255a9719_label.json
          |-------yqstnuAEVhm_f2eeae1a36f14f6cb7b934efd9becb4d_label.json
          .
          .
          .

Then run main.py and specify the config file path

python main.py --config config/config_mp3d.yaml --mode train # For training
python main.py --config config/config_mp3d.yaml --mode val # For testing

Realtor360

To train/val on Realtor360, please modify the item in config_realtor360.yaml.

dataset_path: &dataset_path '/path/to/dataset/location'

The dataset_path follows the folder structure:

  dataset_path/
  |-------train.txt
  |-------val.txt
  |-------sun360/
          |-------pano_ajxqvkaaokwnzs/
                  |-------color.png
                  |-------label.json
          .
          .
  |-------istg/
          |-------1/
                  |-------1/
                          |-------color.png
                          |-------label.json
                  |-------2/
                          |-------color.png
                          |-------label.json
                  .
                  .
          .
          .

Then run main.py and specify the config file path

python main.py --config config/config_realtor360.yaml --mode train # For training
python main.py --config config/config_realtor360.yaml --mode val # For testing

Run Inference

After finishing the training, you can use the following command to run inference on your own data (xxx.jpg or xxx.png).

python run_inference.py --config YOUR_CONFIG --src SRC_FOLDER/ --dst DST_FOLDER --ckpt XXXXX.pkl

This script will predict the layouts of all images (jpg or png) under SRC_FOLDER/ and store the results as json files under DST_FOLDER/.

Pretrained Weights

We provide the pretrained model of Realtor360 in this link.

Currently, we use DuLa-Net's post processing for inference. We will release the version using HorizonNet's post processing later.

Layout Visualization

To visualize the 3D layout, we provide the visualization tool in 360LayoutVisualizer. Please clone it and install the corresponding packages. Then, run the following command

cd 360LayoutVisualizer/
python visualizer.py --img xxxxxx.jpg --json xxxxxx.json

![](https://github.com/fuenwang/LED2-Net/raw/main/src/visualize.png =50%x)

Citation

@misc{wang2021led2net,
      title={LED2-Net: Monocular 360 Layout Estimation via Differentiable Depth Rendering}, 
      author={Fu-En Wang and Yu-Hsuan Yeh and Min Sun and Wei-Chen Chiu and Yi-Hsuan Tsai},
      year={2021},
      eprint={2104.00568},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

GitHub

https://github.com/fuenwang/LED2-Net