12-in-1: Multi-Task Vision and Language Representation Learning

Please cite the following if you use this code. Code and pre-trained models for 12-in-1: Multi-Task Vision and Language Representation Learning:

author = {Lu, Jiasen and Goswami, Vedanuj and Rohrbach, Marcus and Parikh, Devi and Lee, Stefan},
title = {12-in-1: Multi-Task Vision and Language Representation Learning},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}

and ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks:

  title={Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks},
  author={Lu, Jiasen and Batra, Dhruv and Parikh, Devi and Lee, Stefan},
  booktitle={Advances in Neural Information Processing Systems},

Repository Setup

  1. Create a fresh conda environment, and install all dependencies.
conda create -n vilbert-mt python=3.6
conda activate vilbert-mt
git clone --recursive https://github.com/facebookresearch/vilbert-multi-task.git
cd vilbert-multi-task
pip install -r requirements.txt
  1. Install pytorch
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
  1. Install apex, follows https://github.com/NVIDIA/apex

  2. Install this codebase as a package in this environment.

python setup.py develop

Data Setup

Check README.md under data for more details.

Visiolinguistic Pre-training and Multi Task Training

Pretraining on Conceptual Captions

python train_concap.py --bert_model bert-base-uncased --config_file config/bert_base_6layer_6conect.json --train_batch_size 512 --objective 1 --file_path <path_to_extracted_cc_features>

Download link

Multi-task Training

python train_tasks.py --bert_model bert-base-uncased --from_pretrained <pretrained_model_path> --config_file config/bert_base_6layer_6conect.json --tasks 1-2-4-7-8-9-10-11-12-13-15-17 --lr_scheduler 'warmup_linear' --train_iter_gap 4 --task_specific_tokens --save_name multi_task_model

Download link

Fine-tune from Multi-task trained model

python train_tasks.py --bert_model bert-base-uncased --from_pretrained <multi_task_model_path> --config_file config/bert_base_6layer_6conect.json --tasks 1 --lr_scheduler 'warmup_linear' --train_iter_gap 4 --task_specific_tokens --save_name finetune_from_multi_task_model