TRAnsformer Routing Networks (TRAR)

This is an official implementation for ICCV 2021 paper “TRAR: Routing the Attention Spans in Transformers for Visual Question Answering”. It currently includes the code for training TRAR on VQA2.0 and CLEVR dataset. Our TRAR model for REC task is coming soon.

Updates

  • (2021/10/10) Release our TRAR-VQA project.
  • (2021/08/31) Release our pretrained CLEVR TRAR model on train split: TRAR CLEVR Pretrained Models.
  • (2021/08/18) Release our pretrained TRAR model on train+val split and train+val+vg split: VQA-v2 TRAR Pretrained Models
  • (2021/08/16) Release our train2014, val2014 and test2015 data. Please check our dataset setup page DATA.md for more details.
  • (2021/08/15) Release our pretrained weight on train split. Please check our model page MODEL.md for more details.
  • (2021/08/13) The project page for TRAR is avaliable.

Introduction

TRAR vs Standard Transformer

TRAR Overall

Table of Contents

  1. Installation
  2. Dataset setup
  3. Config Introduction
  4. Training
  5. Validation and Testing
  6. Models

Installation

  • Clone this repo

git clone https://github.com/rentainhe/TRAR-VQA.git
cd TRAR-VQA
  • Create a conda virtual environment and activate it

conda create -n trar python=3.7 -y
conda activate trar

conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install Spacy and initialize the GloVe as follows:

pip install -r requirements.txt
wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Dataset setup

see DATA.md

Config Introduction

In trar.yml config we have these specific settings for TRAR model

ORDERS: [0, 1, 2, 3]
IMG_SCALE: 8 
ROUTING: 'hard' # {'soft', 'hard'}
POOLING: 'attention' # {'attention', 'avg', 'fc'}
TAU_POLICY: 1 # {0: 'SLOW', 1: 'FAST', 2: 'FINETUNE'}
TAU_MAX: 10
TAU_MIN: 0.1
BINARIZE: False
  • ORDERS=list, to set the local attention window size for routing.0 for global attention.
  • IMG_SCALE=int, which should be equal to the image feature size used for training. You should set IMG_SCALE: 16 for 16 × 16 training features.
  • ROUTING={'hard', 'soft'}, to set the Routing Block Type in TRAR model.
  • POOLING={'attention', 'avg', 'fc}, to set the Downsample Strategy used in Routing Block.
  • TAU_POLICY={0, 1, 2}, to set the temperature schedule in training TRAR when using ROUTING: 'hard'.
  • TAU_MAX=float, to set the maximum temperature in training.
  • TAU_MIN=float, to set the minimum temperature in training.
  • BINARIZE=bool, binarize the predicted alphas (alphas: the prob of choosing one path), which means during test time, we only keep the maximum alpha and set others to zero. If BINARIZE=False, it will keep all of the alphas and get a weight sum of different routing predict result by alphas. It won’t influence the training time, just a small difference during test time.

Note that please set BINARIZE=False when ROUTING='soft', it’s no need to binarize the path prob in soft routing block.

TAU_POLICY visualization

For MAX_EPOCH=13 with WARMUP_EPOCH=3 we have the following policy strategy:

Training

Train model on VQA-v2 with default hyperparameters:

python3 run.py --RUN='train' --DATASET='vqa' --MODEL='trar'

and the training log will be seved to:

<div class="snippet-clipboard-content position-relative overflow-auto" data-snippet-clipboard-copy-content="results/log/log_run_.txt
“>

results/log/log_run_
   
    .txt