NeuroKit

The Python Toolbox for Neurophysiological Signal Processing

This package is the continuation of NeuroKit 1. It's a user-friendly package providing easy access to advanced biosignal processing routines. Researchers and clinicians without extensive knowledge of programming or biomedical signal processing can analyze physiological data with only two lines of code.

Quick Example

import neurokit2 as nk

# Download example data
data = nk.data("bio_eventrelated_100hz")

# Preprocess the data (filter, find peaks, etc.)
processed_data, info = nk.bio_process(ecg=data["ECG"], rsp=data["RSP"], eda=data["EDA"], sampling_rate=100)

# Compute relevant features
results = nk.bio_analyze(processed_data, sampling_rate=100)

And boom ![boom](https://github.githubassets.com/images/icons/emoji/unicode/1f4a5.png =20x20) your analysis is done ![sunglasses](https://github.githubassets.com/images/icons/emoji/unicode/1f60e.png =20x20)

Installation

You can install NeuroKit2 from PyPI

pip install neurokit2

or conda-forge

conda install -c conda-forge neurokit2

If you're not sure what to do, read our installation guide.

NeuroKit2 is the most welcoming project with a large community of contributors with all levels of programming expertise.

Don't know which tutorial is suited for your case? Follow this flowchart:

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f776f726b666c6f772e706e67

Citation

https://img.shields.io/badge/details-authors-purple.svg?colorB=9C27B0

The NeuroKit paper can be found here ![tada](https://github.githubassets.com/images/icons/emoji/unicode/1f389.png =20x20) Additionally, you can get the reference directly from Python by running:

nk.cite()

You can cite NeuroKit2 as follows:

- Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C., Lespinasse, F., Pham, H.,
Schölzel, C., & Chen, S. A. (2021). NeuroKit2: A Python toolbox for neurophysiological signal processing.
Behavior Research Methods. https://doi.org/10.3758/s13428-020-01516-y

Full bibtex reference:

@article{Makowski2021neurokit,
    author={Makowski, Dominique and Pham, Tam and Lau, Zen J. and Brammer, Jan C. and Lespinasse, Fran{\c{c}}ois and Pham, Hung and Sch{\"o}lzel, Christopher and Chen, S. H. Annabel},
    title={NeuroKit2: A Python toolbox for neurophysiological signal processing},
    journal={Behavior Research Methods},
    year={2021},
    month={Feb},
    day={02},
    issn={1554-3528},
    doi={10.3758/s13428-020-01516-y},
    url={https://doi.org/10.3758/s13428-020-01516-y}
}

Let us know if you used NeuroKit in a publication! Open a new discussion (select the NK in publications category) and link the paper. The community would be happy to know about how you used it and learn about your research. We could also feature it once we have a section on the website for papers that used the software.

Physiological Data Preprocessing

Simulate physiological signals

import numpy as np
import pandas as pd
import neurokit2 as nk

# Generate synthetic signals
ecg = nk.ecg_simulate(duration=10, heart_rate=70)
ppg = nk.ppg_simulate(duration=10, heart_rate=70)
rsp = nk.rsp_simulate(duration=10, respiratory_rate=15)
eda = nk.eda_simulate(duration=10, scr_number=3)
emg = nk.emg_simulate(duration=10, burst_number=2)

# Visualise biosignals
data = pd.DataFrame({"ECG": ecg,
                     "PPG": ppg,
                     "RSP": rsp,
                     "EDA": eda,
                     "EMG": emg})
nk.signal_plot(data, subplots=True)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f73696d756c6174696f6e2e706e67

Electrodermal Activity (EDA/GSR)

# Generate 10 seconds of EDA signal (recorded at 250 samples / second) with 2 SCR peaks
eda = nk.eda_simulate(duration=10, sampling_rate=250, scr_number=2, drift=0.01)

# Process it
signals, info = nk.eda_process(eda, sampling_rate=250)

# Visualise the processing
nk.eda_plot(signals, sampling_rate=250)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f6564612e706e67

Cardiac activity (ECG)

# Generate 15 seconds of ECG signal (recorded at 250 samples / second)
ecg = nk.ecg_simulate(duration=15, sampling_rate=250, heart_rate=70)

# Process it
signals, info = nk.ecg_process(ecg, sampling_rate=250)

# Visualise the processing
nk.ecg_plot(signals, sampling_rate=250)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f6563672e706e67

Respiration (RSP)

# Generate one minute of respiratory (RSP) signal (recorded at 250 samples / second)
rsp = nk.rsp_simulate(duration=60, sampling_rate=250, respiratory_rate=15)

# Process it
signals, info = nk.rsp_process(rsp, sampling_rate=250)

# Visualise the processing
nk.rsp_plot(signals, sampling_rate=250)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f7273702e706e67

Electromyography (EMG)

# Generate 10 seconds of EMG signal (recorded at 250 samples / second)
emg = nk.emg_simulate(duration=10, sampling_rate=250, burst_number=3)

# Process it
signal, info = nk.emg_process(emg, sampling_rate=250)

# Visualise the processing
nk.emg_plot(signals, sampling_rate=250)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f656d672e706e67

Photoplethysmography (PPG/BVP)

# Generate 15 seconds of PPG signal (recorded at 250 samples / second)
ppg = nk.ppg_simulate(duration=15, sampling_rate=250, heart_rate=70)

# Process it
signals, info = nk.ppg_process(ppg, sampling_rate=250)

# Visualize the processing
nk.ppg_plot(signals, sampling_rate=250)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f7070672e706e67

Electrooculography (EOG)

# Import EOG data
eog_signal = nk.data("eog_100hz")

# Process it
signals, info = nk.eog_process(eog_signal, sampling_rate=100)

# Plot
plot = nk.eog_plot(signals, sampling_rate=100)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f656f672e706e67

Electrogastrography (EGG)

Consider helping us develop it!

Physiological Data Analysis

The analysis of physiological data usually comes in two types, event-related or interval-related.

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f66656174757265732e706e67

Event-related

This type of analysis refers to physiological changes immediately occurring in response to an event. For instance, physiological changes following the presentation of a stimulus (e.g., an emotional stimulus) indicated by the dotted lines in the figure above. In this situation the analysis is epoch-based. An epoch is a short chunk of the physiological signal (usually < 10 seconds), that is locked to a specific stimulus and hence the physiological signals of interest are time-segmented accordingly. This is represented by the orange boxes in the figure above. In this case, using bio_analyze() will compute features like rate changes, peak characteristics and phase characteristics.

Interval-related

This type of analysis refers to the physiological characteristics and features that occur over longer periods of time (from a few seconds to days of activity). Typical use cases are either periods of resting-state, in which the activity is recorded for several minutes while the participant is at rest, or during different conditions in which there is no specific time-locked event (e.g., watching movies, listening to music, engaging in physical activity, etc.). For instance, this type of analysis is used when people want to compare the physiological activity under different intensities of physical exercise, different types of movies, or different intensities of stress. To compare event-related and interval-related analysis, we can refer to the example figure above. For example, a participant might be watching a 20s-long short film where particular stimuli of interest in the movie appears at certain time points (marked by the dotted lines). While event-related analysis pertains to the segments of signals within the orange boxes (to understand the physiological changes pertaining to the appearance of stimuli), interval-related analysis can be applied on the entire 20s duration to investigate how physiology fluctuates in general. In this case, using bio_analyze() will compute features such as rate characteristics (in particular, variability metrics) and peak characteristics.

Miscellaneous

Heart Rate Variability (HRV)

  • Compute HRV indices
    • Time domain: RMSSD, MeanNN, SDNN, SDSD, CVNN etc.

    • Frequency domain: Spectral power density in various frequency bands (Ultra low/ULF, Very low/VLF, Low/LF, High/HF, Very high/VHF), Ratio of LF to HF power, Normalized LF (LFn) and HF (HFn), Log transformed HF (LnHF).

    • Nonlinear domain: Spread of RR intervals (SD1, SD2, ratio between SD2 to SD1), Cardiac Sympathetic Index (CSI), Cardial Vagal Index (CVI), Modified CSI, Sample Entropy (SampEn).

      Download data

      data = nk.data("bio_resting_8min_100hz")

      Find peaks

      peaks, info = nk.ecg_peaks(data["ECG"], sampling_rate=100)

      Compute HRV indices

      nk.hrv(peaks, sampling_rate=100, show=True)

      HRV_RMSSD HRV_MeanNN HRV_SDNN ... HRV_CVI HRV_CSI_Modified HRV_SampEn
      0 69.697983 696.395349 62.135891 ... 4.829101 592.095372 1.259931

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f6872762e706e67-1

ECG Delineation

  • Delineate the QRS complex of an electrocardiac signal (ECG) including P-peaks, T-peaks, as well as their onsets and offsets.

    Download data

    ecg_signal = nk.data(dataset="ecg_3000hz")['ECG']

    Extract R-peaks locations

    _, rpeaks = nk.ecg_peaks(ecg_signal, sampling_rate=3000)

    Delineate

    signal, waves = nk.ecg_delineate(ecg_signal, rpeaks, sampling_rate=3000, method="dwt", show=True, show_type='all')

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f64656c696e656174652e706e67

Signal Processing

  • Signal processing functionalities
    • Filtering: Using different methods.

    • Detrending: Remove the baseline drift or trend.

    • Distorting: Add noise and artifacts.

      Generate original signal

      original = nk.signal_simulate(duration=6, frequency=1)

      Distort the signal (add noise, linear trend, artifacts etc.)

      distorted = nk.signal_distort(original,
      noise_amplitude=0.1,
      noise_frequency=[5, 10, 20],
      powerline_amplitude=0.05,
      artifacts_amplitude=0.3,
      artifacts_number=3,
      linear_drift=0.5)

      Clean (filter and detrend)

      cleaned = nk.signal_detrend(distorted)
      cleaned = nk.signal_filter(cleaned, lowcut=0.5, highcut=1.5)

      Compare the 3 signals

      plot = nk.signal_plot([original, distorted, cleaned])

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f7369676e616c70726f63657373696e672e706e67

Complexity (Entropy, Fractal Dimensions, ...)

  • Optimize complexity parameters (delay tau, dimension m, tolerance r)

    Generate signal

    signal = nk.signal_simulate(frequency=[1, 3], noise=0.01, sampling_rate=100)

    Find optimal time delay, embedding dimension and r

    parameters = nk.complexity_optimize(signal, show=True)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f636f6d706c65786974795f6f7074696d697a652e706e67

  • Compute complexity features
    • Entropy: Sample Entropy (SampEn), Approximate Entropy (ApEn), Fuzzy Entropy (FuzzEn), Multiscale Entropy (MSE), Shannon Entropy (ShEn)

    • Fractal dimensions: Correlation Dimension D2, ...

    • Detrended Fluctuation Analysis

      nk.entropy_sample(signal)
      nk.entropy_approximate(signal)

Signal Decomposition

# Create complex signal
signal = nk.signal_simulate(duration=10, frequency=1)  # High freq
signal += 3 * nk.signal_simulate(duration=10, frequency=3)  # Higher freq
signal += 3 * np.linspace(0, 2, len(signal))  # Add baseline and linear trend
signal += 2 * nk.signal_simulate(duration=10, frequency=0.1, noise=0)  # Non-linear trend
signal += np.random.normal(0, 0.02, len(signal))  # Add noise

# Decompose signal using Empirical Mode Decomposition (EMD)
components = nk.signal_decompose(signal, method='emd')
nk.signal_plot(components)  # Visualize components

# Recompose merging correlated components
recomposed = nk.signal_recompose(components, threshold=0.99)
nk.signal_plot(recomposed)  # Visualize components

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f6465636f6d706f736974696f6e2e706e67

Signal Power Spectrum Density (PSD)

# Generate complex signal
signal = nk.signal_simulate(duration=20, frequency=[0.5, 5, 10, 15], amplitude=[2, 1.5, 0.5, 0.3], noise=0.025)

# Get the PSD using different methods
welch = nk.signal_psd(signal, method="welch", min_frequency=1, max_frequency=20, show=True)
multitaper = nk.signal_psd(signal, method="multitapers", max_frequency=20, show=True)
lomb = nk.signal_psd(signal, method="lomb", min_frequency=1, max_frequency=20, show=True)
burg = nk.signal_psd(signal, method="burg", min_frequency=1, max_frequency=20, order=10, show=True)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f7073642e706e67

Statistics

  • Highest Density Interval (HDI)

    x = np.random.normal(loc=0, scale=1, size=100000)

    ci_min, ci_max = nk.hdi(x, ci=0.95, show=True)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f6864692e706e67

Popularity

https://img.shields.io/pypi/dd/neurokit2https://img.shields.io/github/stars/neuropsychology/NeuroKithttps://img.shields.io/github/forks/neuropsychology/NeuroKit

NeuroKit2 is one of the most welcoming package for new contributors and users, as well as the fastest growing package. So stop hesitating and hop onboard ![hugs](https://github.githubassets.com/images/icons/emoji/unicode/1f917.png =20x20)

68747470733a2f2f7261772e6769746875622e636f6d2f6e6575726f70737963686f6c6f67792f4e6575726f4b69742f6d61737465722f646f63732f726561646d652f524541444d455f706f70756c61726974792e706e67

Notes

The authors do not provide any warranty. If this software causes your keyboard to blow up, your brain to liquefy, your toilet to clog or a zombie plague to break loose, the authors CANNOT IN ANY WAY be held responsible.