Deep High Dynamic Range Imaging Benchmark
Deep High Dynamic Range Imaging Benchmark
This repository is the pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms. Please find the details below.
Maintenance and Contributors
Requirements
- pytorch==1.4.0
- opencv-python
- scikit-image==0.17.2
ToDo List
- adaptive padding
- add more baselines
Supported Algorthms
- DeepHDR [1]
- NHDRRNet [2]
- AHDR [3]
- DAHDR [4]
Instruction
- download the Kalantari dataset via: [link], and organize the dataset as follows:
dataset
│
└───Traning
│ │ 001
│ │ 002
│ │ 003
│ | ...
│
└───Test
│ 001
│ 002
| 003
| ...
- train the network [unet|nhdrrnet|ahdr|dahdr]:
python train.py --net-type unet --cuda --batch-size 8 --lr 0.0002
- continue training using the pre-saved checkpoint:
python train.py --net-type unet --cuda --resume --last-ckpt-path <the saved ckpt path>
- test the model and save HDR images:
python eval_metric.py --net-type unet --model-path <the saved ckpt path> --cuda --save-image
Pre-trained Models
The pre-trained models can be downloaded from the released page.
Performance
DeepHDR[1] | NHDRRNet[2] | AHDR[3] | DAHDR[4] | |
---|---|---|---|---|
PSNR-$\mu$ | 42.2695 | 42.4769 | 43.5742 | 43.5240 |
SSIM-$\mu$ | 0.9941 | 0.9942 | 0.9956 | 0.9956 |
PSNR-L | 40.0627 | 40.1978 | 41.1551 | 40.7534 |
SSIM-L | 0.9892 | 0.9889 | 0.9903 | 0.9905 |
Acknowledgements
@elliottwu for DeepHDR
@qingsenyangit for AHDRNet
@Galaxies99 for NHDRRNet details
References
[1] Deep High Dynamic Range Imaging with Large Foreground Motions
[2] Deep HDR Imaging via A Non-Local Network
[3] Attention-guided Network for Ghost-free High Dynamic Range Imaging
[4] Dual-Attention-Guided Network for Ghost-Free High Dynamic Range Imaging