Vision Longformer

This project provides the source code for the vision longformer paper.

Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Highlights

  • Fast Pytorch implementation of conv-like sliding-window local attention
  • Fast random-shifting training strategy of vision longformer
  • A versatile multi-scale vision transformer class (MsViT) that can support various efficient attention mechanisms
  • Compare multiple efficient attention mechanisms: vision-longformer ("global + conv_like local") attention, performer attention, global-memory attention, linformer attention and spatial reduction attention.
  • Provides pre-trained models for different attention mechanisms.

Updates

  • 03/29/2021: First version of vision longformer paper posted on Arxiv.
  • 04/30/2021: Performance improved by adding relative positional bias, inspired by Swin Transformer! Training is accelerated significantly by adding random-shifting training strategy. First version of code released.
  • 05/17/2021: First version of Object Detection code and checkpoints released at VisionLongformerForObjectDetection.
  • 05/27/2021: vision longformer paper is updated on Arxiv to reflect the recent changes. The object detection results are improved significantly due to the relative positional bias and tuning of the drop_path hyper-parameter.
  • 07/23/2021: Vision Longformer is officially accepted by ICCV 2021.

Multi-scale Vision Transformer Architecture

stacked_vits

Vision Longformer, and more generally the Multi-scale Vision Transformer (MsViT), follows the multi-stage design of ResNet. Each stage is a (slightly modified) vision transformer with some user-specified attenion mechanism. Currently, five attention mechanisms are supported:

# choices=['full', 'longformerhand', 'linformer', 'srformer', 'performer', 'longformerauto', 'longformer_cuda']
_C.MODEL.VIT.MSVIT.ATTN_TYPE = 'longformerhand'

vit_layer

As an example, a 3-stage multi-scale model architecture is specified by the MODEL.VIT.MSVIT.ARCH:

_C.MODEL.VIT.MSVIT.ARCH = 'l1,h3,d192,n1,s1,g1,p16,f7,a1_l2,h6,d384,n10,s0,g1,p2,f7,a1_l3,h12,d796,n1,s0,g1,p2,f7,a1'

Configs of different stages are separated by _. For each stage, the meaning of the config l*,h*,d*,n*,s*,g*,p*,f*,a* is specified as below.

symbol l h d n s g p f a
Name stage num_heads hidden_dim num_layers is_parse_attention num_global_tokens patch_size num_feats absolute_position_embedding
Range [1,2,3,4] N+ N+ N+ [0, 1] N N N [0,1]

Here, N stands for natural numbers including 0, and N+ stands for positive integers.

The num_feats (number of features) field, i.e., f, is overloaded for different attention mechanisms:

linformer: number of features

performer: number of (random orthogonal) features

srformer: spatial reduction ratio

longformer: one sided window size (not including itself, actual window size is 2 * f + 1 for MSVIT.SW_EXACT = 1 and 3 * f for MSVIT.SW_EXACT = 0/-1).

The following are the main model architectures used in Vision Longformer paper.

Model size stage_1 stage_2 stage_3 stage_4
Tiny n1,p4,h1,d48 n1,p2,h3,d96 n9,p2,h3,d192 n1,p2,h6,d384
Small n1,p4,h3,d96 n2,p2,h3,d192 n8,p2,h6,d384 n1,p2,h12,d768
Medium-Deep n1,p4,h3,d96 n4,p2,h3,d192 n16,p2,h6,d384 n1,p2,h12,d768
Medium-Wide n1,p4,h3,d192 n2,p2,h6,d384 n8,p2,h8,d512 n1,p2,h12,d768
Base-Deep n1,p4,h3,d96 n8,p2,h3,d192 n24,p2,h6,d384 n1,p2,h12,d768
Base-Wide n1,p4,h3,d192 n2,p2,h6,d384 n8,p2,h12,d768 n1,p2,h16,d1024

Model Performance

Main Results on ImageNet and Pretrained Models

Vision Longformer with absolute positional embedding

name pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
ViL-Tiny ImageNet-1K 224x224 76.3 93.3 6.7M 1.43G - ckpt, config
ViL-Small ImageNet-1K 224x224 82.0 95.8 24.6M 5.12G - ckpt, config
ViL-Medium-Deep ImageNet-1K 224x224 83.3 96.3 39.7M 9.1G - ckpt, config
ViL-Medium-Wide ImageNet-1K 224x224 82.9 96.4 39.8M 11.3G - ckpt, config
ViL-Medium-Deep ImageNet-22K 384x384 85.6 97.7 39.7M 29.4G ckpt, config ckpt, config
ViL-Medium-Wide ImageNet-22K 384x384 84.7 97.3 39.8M 35.1G ckpt, config ckpt, config
ViL-Base-Deep ImageNet-22K 384x384 86.0 97.9 55.7M 45.3G ckpt, config ckpt, config
ViL-Base-Wide ImageNet-22K 384x384 86.2 98.0 79.0M 55.8G ckpt, config ckpt, config

Vision Longformer with relative positional embedding and comparison with Swin Transformers

name pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
ViL-Tiny ImageNet-1K 224x224 76.65 93.55 6.7M 1.43G - ckpt config
ViL-Small ImageNet-1K 224x224 82.39 95.92 24.6M 5.12G - ckpt config
ViL-Medium-Deep ImageNet-1K 224x224 83.52 96.52 39.7M 9.1G - ckpt config
ViL-Medium-Deep ImageNet-22K 384x384 85.73 97.8 39.7M 29.4G ckpt config ckpt config
ViL-Base-Deep ImageNet-22K 384x384 86.11 97.89 55.7M 45.3G ckpt config ckpt config
--- --- --- --- --- --- --- --- ---
Swin-Tiny (2-2-6-2) ImageNet-1K 224x224 81.2 95.5 28M 4.5G - from swin repo
ViL-Swin-Tiny (2-2-6-2) ImageNet-1K 224x224 82.71 95.95 28M 5.33G - ckpt config
Swin-Small (2-2-18-2) ImageNet-1K 224x224 83.2 96.2 50M 8.7G - from swin repo
ViL-Swin-Small (2-2-18-2) ImageNet-1K 224x224 83.7 96.43 50M 9.85G - ckpt config

Results of other attention mechanims (Small size)

Attention pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
full ImageNet-1K 224x224 81.9 95.8 24.6M 6.95G - ckpt, config
longformer ImageNet-1K 224x224 82.0 95.8 24.6M 5.12G - ckpt, config
--- --- --- --- --- --- --- --- ---
linformer ImageNet-1K 224x224 81.0 95.4 26.3M 5.62G - ckpt, config
srformer/64 ImageNet-1K 224x224 76.4 92.9 52.9M 3.97G - ckpt, config
srformer/32 ImageNet-1K 224x224 79.9 94.9 31.1M 4.28G - ckpt, config
global ImageNet-1K 224x224 79.0 94.5 24.9M 6.78G - ckpt, config
performer ImageNet-1K 224x224 78.7 94.3 24.8M 6.26G - ckpt, config
--- --- --- --- --- --- --- --- ---
partial linformer ImageNet-1K 224x224 81.8 95.9 25.8M 5.21G - ckpt, config
partial srformer/32 ImageNet-1K 224x224 81.6 95.7 26.4M 4.57G - ckpt, config
partial global ImageNet-1K 224x224 81.4 95.7 24.9M 6.3G - ckpt, config
partial performer ImageNet-1K 224x224 81.7 95.7 24.7M 5.52G - ckpt, config

See more results on comparing different efficient attention mechanisms in Table 13 and Table 14 in the Vision Longformer paper.

Main Results on COCO object detection and instance segmentation (with absolute positional embedding)

Vision Longformer with relative positional bias

Backbone Method pretrain drop_path Lr Schd box mAP mask mAP #params FLOPs checkpoints log
ViL-Tiny Mask R-CNN ImageNet-1K 0.05 1x 41.4 38.1 26.9M 145.6G ckpt config log
ViL-Tiny Mask R-CNN ImageNet-1K 0.1 3x 44.2 40.6 26.9M 145.6G ckpt config log
ViL-Small Mask R-CNN ImageNet-1K 0.2 1x 45.0 41.2 45.0M 218.3G ckpt config log
ViL-Small Mask R-CNN ImageNet-1K 0.2 3x 47.1 42.7 45.0M 218.3G ckpt config log
ViL-Medium (D) Mask R-CNN ImageNet-21K 0.2 1x 47.6 43.0 60.1M 293.8G ckpt config log
ViL-Medium (D) Mask R-CNN ImageNet-21K 0.3 3x 48.9 44.2 60.1M 293.8G ckpt config log
ViL-Base (D) Mask R-CNN ImageNet-21K 0.3 1x 48.6 43.6 76.1M 384.4G ckpt config log
ViL-Base (D) Mask R-CNN ImageNet-21K 0.3 3x 49.6 44.5 76.1M 384.4G ckpt config log
--- --- --- --- --- --- --- --- ---
ViL-Tiny RetinaNet ImageNet-1K 0.05 1x 40.8 -- 16.64M 182.7G ckpt config log
ViL-Tiny RetinaNet ImageNet-1K 0.1 3x 43.6 -- 16.64M 182.7G ckpt config log
ViL-Small RetinaNet ImageNet-1K 0.1 1x 44.2 -- 35.68M 254.8G ckpt config log
ViL-Small RetinaNet ImageNet-1K 0.2 3x 45.9 -- 35.68M 254.8G ckpt config log
ViL-Medium (D) RetinaNet ImageNet-21K 0.2 1x 46.8 -- 50.77M 330.4G ckpt config log
ViL-Medium (D) RetinaNet ImageNet-21K 0.3 3x 47.9 -- 50.77M 330.4G ckpt config log
ViL-Base (D) RetinaNet ImageNet-21K 0.3 1x 47.8 -- 66.74M 420.9G ckpt config log
ViL-Base (D) RetinaNet ImageNet-21K 0.3 3x 48.6 -- 66.74M 420.9G ckpt config log

See more fine-grained results in Table 6 and Table 7 in the Vision Longformer paper. We use weight decay 0.05 for all experiments, but search for best drop path in [0.05, 0.1, 0.2, 0.3].

Comparison of various efficient attention mechanims with absolute positional embedding (Small size)

Backbone Method pretrain drop_path Lr Schd box mAP mask mAP #params FLOPs Memory checkpoints log
srformer/64 Mask R-CNN ImageNet-1K 0.1 1x 36.4 34.6 73.3M 224.1G 7.1G ckpt config log
srformer/32 Mask R-CNN ImageNet-1K 0.1 1x 39.9 37.3 51.5M 268.3G 13.6G ckpt config log
Partial srformer/32 Mask R-CNN ImageNet-1K 0.1 1x 42.4 39.0 46.8M 352.1G 22.6G ckpt config log
global Mask R-CNN ImageNet-1K 0.1 1x 34.8 33.4 45.2M 226.4G 7.6G ckpt config log
Partial global Mask R-CNN ImageNet-1K 0.1 1x 42.5 39.2 45.1M 326.5G 20.1G ckpt config log
performer Mask R-CNN ImageNet-1K 0.1 1x 36.1 34.3 45.0M 251.5G 8.4G ckpt config log
Partial performer Mask R-CNN ImageNet-1K 0.05 1x 42.3 39.1 45.0M 343.7G 20.0G ckpt config log
ViL Mask R-CNN ImageNet-1K 0.1 1x 42.9 39.6 45.0M 218.3G 7.4G ckpt config log
Partial ViL Mask R-CNN ImageNet-1K 0.1 1x 43.3 39.8 45.0M 326.8G 19.5G ckpt config log

We use weight decay 0.05 for all experiments, but search for best drop path in [0.05, 0.1, 0.2].

Compare different implementations of vision longformer

Please go to Implementation for implementation details of vision longformer.

Training/Testing Vision Longformer on Local Machine

Prepare datasets

One needs to download zip files of ImageNet (train.zip, train_map.txt, val.zip, val_map.txt) under the specified data folder, e.g.,
the default src/datasets/imagenet. The CIFAR10, CIFAR100 and MNIST can be automatically downloaded.

With the default setting, we should have the following files in the /root/datasets directory:

root (root folder)
├── datasets (folder with all the datasets and pretrained models)
├──── imagenet/ (imagenet dataset and pretrained models)
├────── 2012/
├───────── train.zip
├───────── val.zip
├───────── train_map.txt
├───────── val_map.txt
├──── CIFAR10/ (CIFAR10 dataset and pretrained models)
├──── CIFAR100/ (CIFAR100 dataset and pretrained models)
├──── MNIST/ (MNIST dataset and pretrained models)

Environment requirements

It is recommended to use any of the following docker images to run the experiments.

pengchuanzhang/maskrcnn:ubuntu18-py3.7-cuda10.1-pytorch1.7 # recommended
pengchuanzhang/maskrcnn:py3.7-cuda10.0-pytorch1.7 # if you want to try the customized cuda kernel of vision longformer.

For virtual environments, the following packages should be the sufficient.

pytorch >= 1.5
tensorboardx, einops, timm, yacs==0.1.8

Evaluation scripts

Navigate to the src folder, run the following commands to evaluate the pre-trained models above.

Pretrained models of Vision Longformer

# tiny
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h1,d48,n1,s1,g1,p4,f7_l2,h3,d96,n1,s1,g1,p2,f7_l3,h3,d192,n9,s0,g1,p2,f7_l4,h6,d384,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/msvit_tiny_longformersw_1191_train/model_best.pth 
INFO:root:ACCURACY: 76.29600524902344%
INFO:root:iter: 0  max mem: 2236
    accuracy_metrics - top1: 76.2960 (76.2960)  top5: 93.2720 (93.2720)
    epoch_metrics    - total_cnt: 50000.0000 (50000.0000)  loss: 0.0040 (0.0040)  time: 0.0022 (0.0022)

# small
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n2,s1,g1,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/msvit_small_longformersw_1281_train/model_best.pth 
INFO:root:ACCURACY: 81.97799682617188%
INFO:root:iter: 0  max mem: 6060
    accuracy_metrics - top1: 81.9780 (81.9780)  top5: 95.7880 (95.7880)
    epoch_metrics    - total_cnt: 50000.0000 (50000.0000)  loss: 0.0031 (0.0031)  time: 0.0029 (0.0029)

# medium-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n4,s1,g1,p2,f7_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/deepmedium_14161_lr8e-4/model_best.pth

# medium-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f7_l2,h6,d384,n2,s1,g1,p2,f7_l3,h8,d512,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/wide_medium_1281/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned medium-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n4,s1,g1,p2,f7_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitdeepmedium_imagenet384_finetune_bsz256_lr001_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned medium-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f8_l2,h6,d384,n2,s1,g1,p2,f12_l3,h8,d512,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitwidemedium_imagenet384_finetune_bsz512_lr004_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned base-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.LN_EPS 1e-5 MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f6_l2,h3,d192,n8,s1,g1,p2,f8_l3,h6,d384,n24,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitdeepbase_imagenet384_finetune_bsz640_lr003_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned base-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f8_l2,h6,d384,n2,s1,g1,p2,f8_l3,h12,d768,n8,s0,g1,p2,f7_l4,h16,d1024,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitwidebase_imagenet384_finetune_bsz768_lr001_wd1e-7/model_best.pth DATALOADER.BSZ 64

Pretrained models of other attention mechanisms

# Small full attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE full MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n2,s1,g1,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/fullMSA/small1281/model_best.pth

# Small linformer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE linformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s1,g1,p2,f256_l4,h12,d768,n1,s1,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/linformer/small1281_full/model_best.pth

# Small partial linformer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE linformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s0,g1,p2,f256_l4,h12,d768,n1,s0,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/linformer/small1281_partial/model_best.pth

# Small global attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.AVG_POOL True MODEL.VIT.MSVIT.ONLY_GLOBAL True MODEL.VIT.MSVIT.ATTN_TYPE longformerhand MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g256,p4,f7_l2,h3,d192,n2,s1,g256,p2,f7_l3,h6,d384,n8,s1,g64,p2,f7_l4,h12,d768,n1,s1,g16,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/globalformer/globalfull1281/model_best.pth

# Small partial global attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.AVG_POOL True MODEL.VIT.MSVIT.ONLY_GLOBAL True MODEL.VIT.MSVIT.ATTN_TYPE longformerhand MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g256,p4,f7_l2,h3,d192,n2,s1,g256,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h6,d384,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/globalformer/globalpartial1281/model_best.pth

# Small spatial reduction attention with down-sample ratio 64
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f16_l2,h3,d192,n2,s1,g1,p2,f8_l3,h6,d384,n8,s1,g1,p2,f4_l4,h12,d768,n1,s1,g0,p2,f2' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerfull1281/model_best.pth

# Small spatial reduction attention with down-sample ratio 32
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n2,s1,g1,p2,f4_l3,h6,d384,n8,s1,g1,p2,f2_l4,h12,d768,n1,s0,g0,p2,f1' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerfull8_1281/model_best.pth

# Small partial spatial reduction attention with down-sample ratio 32
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n2,s1,g1,p2,f4_l3,h6,d384,n8,s0,g1,p2,f2_l4,h12,d768,n1,s0,g0,p2,f1' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerpartial1281/model_best.pth

# Small performer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE performer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s1,g1,p2,f256_l4,h12,d768,n1,s1,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/performer/fullperformer1281/model_best.pth

# Small partial performer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE performer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s0,g1,p2,f256_l4,h12,d768,n1,s0,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/performer/partialperformer1281/model_best.pth

Training scripts

We provide three example training scripts as below.

# ViL-Tiny with relative positional embedding: Imagenet1K training with 224x224 resolution
python -m torch.distributed.launch --nproc_per_node=4 run_experiment.py --config-file
    'config/msvit.yaml' --data '../datasets/imagenet/2012/' OPTIM.OPT adamw
    OPTIM.LR 1e-3 OPTIM.WD 0.1 DATALOADER.BSZ 1024 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 300 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 224 MODEL.VIT.MSVIT.ARCH
    "l1,h1,d48,n1,s1,g1,p4,f7,a0_l2,h3,d96,n2,s1,g1,p2,f7,a0_l3,h3,d192,n8,s0,g1,p2,f7,a0_l4,h6,d384,n1,s0,g0,p2,f7,a0"
    AUG.REPEATED_AUG False

# Training with random shifting strategy: accelerate the training significantly
python -m torch.distributed.launch --nproc_per_node=4 run_experiment.py --config-file
    'config/msvit.yaml' --data '../datasets/imagenet/2012/' OPTIM.OPT adamw
    OPTIM.LR 1e-3 OPTIM.WD 0.1 DATALOADER.BSZ 1024 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 300 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 224 MODEL.VIT.MSVIT.ARCH
    "l1,h1,d48,n1,s1,g1,p4,f7,a0_l2,h3,d96,n2,s1,g1,p2,f7,a0_l3,h3,d192,n8,s0,g1,p2,f7,a0_l4,h6,d384,n1,s0,g0,p2,f7,a0"
    AUG.REPEATED_AUG False MODEL.VIT.MSVIT.MODE 1 MODEL.VIT.MSVIT.VIL_MODE_SWITCH 0.875

# ViL-Medium-Deep: Imagenet1K finetuning with 384x384 resolution
python -m torch.distributed.launch --nproc_per_node=8 run_experiment.py --config-file
    'config/msvit_384finetune.yaml' --data '/mnt/default/data/sasa/imagenet/2012/'
    OPTIM.OPT qhm OPTIM.LR 0.01 OPTIM.WD 0.0 DATALOADER.BSZ 256 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 10 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 384 MODEL.VIT.MSVIT.ARCH
    "l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n4,s1,g1,p2,f12_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7"
    MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN22kpretrained/deepmedium/model_best.pth

Cite Vision Longformer

Please consider citing vision longformer if it helps your work.

@article{zhang2021multi,
  title={Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding},
  author={Zhang, Pengchuan and Dai, Xiyang and Yang, Jianwei and Xiao, Bin and Yuan, Lu and Zhang, Lei and Gao, Jianfeng},
  journal={ICCV 2021},
  year={2021}
}

GitHub

https://github.com/microsoft/vision-longformer