/ Machine Learning

SRDenseNet-pytorch(ICCV_2017)

SRDenseNet-pytorch(ICCV_2017)

SRDenseNet-pytorch

Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

Usage

Training

usage: main.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS] [--lr LR]
               [--step STEP] [--cuda] [--resume RESUME]
               [--start-epoch START_EPOCH] [--threads THREADS]
               [--pretrained PRETRAINED]

Pytorch SRDenseNet train

optional arguments:
  -h, --help            show this help message and exit
  --batchSize BATCHSIZE
                        training batch size
  --nEpochs NEPOCHS     number of epochs to train for
  --lr LR               Learning Rate. Default=1e-4
  --step STEP           Sets the learning rate to the initial LR decayed by
                        10 every n epochs, Default: n=30
  --cuda                Use cuda?
  --resume RESUME       Path to checkpoint (default: none)
  --start-epoch START_EPOCH
                        Manual epoch number (useful on restarts)
  --threads THREADS     Number of threads for data loader to use, Default: 1
  --pretrained PRETRAINED
                        path to pretrained model (default: none)

Test

usage: test.py [-h] [--cuda] [--model MODEL] [--imageset IMAGESET] [--scale SCALE]

Pytorch SRDenseNet Test

optional arguments:
  -h, --help     show this help message and exit
  --cuda         use cuda?
  --model MODEL  model path
  --imageset IMAGESET  imageset name
  --scale SCALE  scale factor, Default: 4

Prepare Training dataset

The training data is generated with Matlab Bicubic Interplotation, please refer Code for Data Generation for creating training files.

Prepare Test dataset

The test imageset is generated with Matlab Bicubic Interplotation, please refer Code for test for creating test imageset.

Performance

We provide a pretrained .SRDenseNet x4 model trained on DIV2K images from [DIV2K_train_HR] (http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip)
Non-overlapping sub-images with a size of 96 × 96 were cropped in the HR space.
Other settings is the same as the original paper

  • Performance in PSNR on Set5, Set14, and BSD100
DataSet/Method LapSRN Paper LapSRN PyTorch
Set5 32.02/0.893 31.57/0.883
Set14 28.50/0.778 28.11/0.771
BSD100 27.53/0.733 27.32/0.729

GitHub