/ Machine Learning

Deblurring (Orders-of-Magnitude) Faster and Better

Deblurring (Orders-of-Magnitude) Faster and Better

DeblurGAN-v2

We present a new end-to-end generative adversarial network (GAN) for single image motion deblurring, named DeblurGAN-v2, which considerably boosts state-of-the-art deblurring efficiency, quality, and flexibility. DeblurGAN-v2 is based on a relativistic conditional GAN with a double-scale discriminator. For the first time, we introduce the Feature Pyramid Network into deblurring, as a core building block in the generator of DeblurGAN-v2. It can flexibly work with a wide range of backbones, to navigate the balance between performance and efficiency. The plug-in of sophisticated backbones (e.g., Inception-ResNet-v2) can lead to solid state-of-the-art deblurring. Meanwhile, with light-weight backbones (e.g., MobileNet and its variants), DeblurGAN-v2 reaches 10-100 times faster than the nearest competitors, while maintaining close to state-of-the-art results, implying the option of real-time video deblurring. We demonstrate that DeblurGAN-v2 obtains very competitive performance on several popular benchmarks, in terms of deblurring quality (both objective and subjective), as well as efficiency. Besides, we show the architecture to be effective for general image restoration tasks too.

DeblurGANv2

DeblurGAN-v2 Architecture

pipeline

Datasets

The datasets for training can be downloaded via the links below:

Training

Command

python train.py

training script will load config under config/config.yaml

Tensorboard visualization

tensorboard2

Pre-trained models

Dataset G Model D Model Loss Type PSNR/ SSIM Link
GoPro Test Dataset InceptionResNet-v2 double_gan ragan-ls 29.55/ 0.934 https://drive.google.com/open?id=1hv238vS9VeK8C8QwrQ2MnJc3ChgHyaGy
MobileNet double_gan ragan-ls 28.17/ 0.925 https://drive.google.com/open?id=1JhnT4BBeKBBSLqTo6UsJ13HeBXevarrU
MobileNet-DSC double_gan ragan-ls 28.03/ 0.922

Citation

If you use this code for your research, please cite our paper.

​```
@InProceedings{Kupyn_2019_ICCV,
author = {Orest Kupyn and Tetiana Martyniuk and Junru Wu and Zhangyang Wang},
title = {DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2019}
}
​```

GitHub