Template

Script Category Description

Category script
comparison script train.py, loader.py
for single-machine-multiple-cards training train_DP.py, train_DDP.py
for mixed-precision training train_amp.py
for DALI data loading loader_DALI.py

Note: The comment # new # in script represents newly added code block (compare to comparison script, e.g., train.py)

Environment

  • CPU: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
  • GPU: RTX 2080Ti
  • OS: Ubuntu 18.04.3 LTS
  • DL framework: Pytorch 1.6.0, Torchvision 0.7.0

Single-machine-multiple-cards training (two cards for example)

train_DP.py — Parallel computing using nn.DataParallel

Usage:

cd Template/src
python train_DP.py

Superiority:
– Easy to use
– Accelerate training (inconspicuous)
Weakness:
– Unbalanced load
Description:
DataParallel is very convenient to use, we just need to use DataParallel to package the model:

model = ...
model = nn.DataParallel(model)

train_DDP.py — Parallel computing using torch.distributed

Usage:

cd Template/src
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train_DDP.py

Superiority:
– balanced load
– Accelerate training (conspicuous)
Weakness:
– Hard to use
Description:
Unlike DataParallel who control multiple GPUs via single-process, distributed creates multiple process. we just need to accomplish one code and torch will automatically assign it to n processes, each running on corresponding GPU.
To config distributed model via torch.distributed, the following steps needed to be performed:

  1. Get current process index:

parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
opt = parser.parse_args()
# print(opt.local_rank)
  1. Set the backend and port used for communication between GPUs:

dist.init_process_group(backend='nccl')
  1. Config current device according to the local_rank:

torch.cuda.set_device(opt.local_rank)
  1. Config data sampler:

dataset = ...
sampler = distributed.DistributedSampler(dataset)
dataloader = DataLoader(dataset=dataset, ..., sampler=sampler)
  1. Package the model:

model = ...
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[opt.local_rank])

Mixed-precision training

train_amp.py — Mixed-precision training using torch.cuda.amp

Usage:

cd Template/src
python train_amp.py

Superiority:
– Easy to use
– Accelerate training (conspicuous for heavy model)
Weakness:
– Accelerate training (inconspicuous for light model)
Description:
Mixed-precision training is a set of techniques that allows us to use fp16 without causing our model training to diverge.
To config mixed-precision training via torch.cuda.amp, the following steps needed to be performed:

  1. Instantiate GradScaler object:

scaler = torch.cuda.amp.GradScaler()
  1. Modify the traditional optimization process:

# Before:
optimizer.zero_grad()
preds = model(imgs)
loss = loss_func(preds, labels)
loss.backward()
optimizer.step()

# After:
optimizer.zero_grad()
with torch.cuda.amp.autocast():
    preds = model(imgs)
    loss = loss_func(preds, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

DALI data loading

loader_DALI.py — Data loading using nvidia.dali

Prerequisite:
NVIDIA Driver supporting CUDA 10.0 or later (i.e., 410.48 or later driver releases)
– PyTorch 0.4 or later
– Data organization format that matches the code, the format that matches the loader_DALI.py is as follows:
 /dataset / train or test / img or gt / sub_dirs / imgs [View]
Usage:

pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda102
cd Template/src
python loader_DALI.py --data_source /path/to/dataset

Superiority:
– Easy to use
– Accelerate data loading
Weakness:
– Occupy video memory
Description:
NVIDIA Data Loading Library (DALI) is a collection of highly optimized building blocks and an execution engine that accelerates the data pipeline for computer vision and audio deep learning applications.
To load dataset using DALI, the following steps needed to be performed:

  1. Config external input iterator:

eii = ExternalInputIterator(data_source=opt.data_source, batch_size=opt.batch_size, shuffle=True)

# A demo of external input iterator
class ExternalInputIterator(object):
    def __init__(self, data_source, batch_size, shuffle):
        self.batch_size = batch_size
        
        img_paths = sorted(glob.glob(data_source + '/train' + '/blurry' + '/*/*.*'))
        gt_paths = sorted(glob.glob(data_source + '/train' + '/sharp' + '/*/*.*'))
        self.paths = list(zip(*(img_paths,gt_paths)))
        if shuffle:
            random.shuffle(self.paths)

    def __iter__(self):
        self.i = 0
        return self

    def __next__(self):
        imgs = []
        gts = []

        if self.i >= len(self.paths):
            self.__iter__()
            raise StopIteration

        for _ in range(self.batch_size):
            img_path, gt_path = self.paths[self.i % len(self.paths)]
            imgs.append(np.fromfile(img_path, dtype = np.uint8))
            gts.append(np.fromfile(gt_path, dtype = np.uint8))
            self.i += 1
        return (imgs, gts)

    def __len__(self):
        return len(self.paths)

    next = __next__
  1. Config pipeline:

pipe = externalSourcePipeline(batch_size=opt.batch_size, num_threads=opt.num_workers, device_id=0, seed=opt.seed, external_data = eii, resize=opt.resize, crop=opt.crop)

# A demo of pipeline
@pipeline_def
def externalSourcePipeline(external_data, resize, crop):
    imgs, gts = fn.external_source(source=external_data, num_outputs=2)
    
    crop_pos = (fn.random.uniform(range=(0., 1.)), fn.random.uniform(range=(0., 1.)))
    flip_p = (fn.random.coin_flip(), fn.random.coin_flip())
    
    imgs = transform(imgs, resize, crop, crop_pos, flip_p)
    gts = transform(gts, resize, crop, crop_pos, flip_p)
    return imgs, gts

def transform(imgs, resize, crop, crop_pos, flip_p):
    imgs = fn.decoders.image(imgs, device='mixed')
    imgs = fn.resize(imgs, resize_y=resize)
    imgs = fn.crop(imgs, crop=(crop,crop), crop_pos_x=crop_pos[0], crop_pos_y=crop_pos[1])
    imgs = fn.flip(imgs, horizontal=flip_p[0], vertical=flip_p[1])
    imgs = fn.transpose(imgs, perm=[2, 0, 1])
    imgs = imgs/127.5-1
    
    return imgs
  1. Instantiate DALIGenericIterator object:

dgi = DALIGenericIterator(pipe, output_map=["imgs", "gts"], last_batch_padded=True, last_batch_policy=LastBatchPolicy.PARTIAL, auto_reset=True)
  1. Read data:

for i, data in enumerate(dgi):
    imgs = data[0]['imgs']
    gts = data[0]['gts']

GitHub

View Github