#

TreeInterpreter

Package for interpreting scikit-learn’s decision tree and random forest predictions. Allows decomposing each prediction into bias and feature contribution components as described in http://blog.datadive.net/interpreting-random-forests/. For a dataset with `n`

features, each prediction on the dataset is decomposed as `prediction = bias + feature_1_contribution + ... + feature_n_contribution`

.

It works on scikit-learn’s

- DecisionTreeRegressor
- DecisionTreeClassifier
- ExtraTreeRegressor
- ExtraTreeClassifier
- RandomForestRegressor
- RandomForestClassifier
- ExtraTreesRegressor
- ExtraTreesClassifier

Free software: BSD license

##

Dependencies

##

Installation

The easiest way to install the package is via `pip`

:

$ pip install treeinterpreter

##

Usage

from treeinterpreter import treeinterpreter as ti
# fit a scikit-learn's regressor model
rf = RandomForestRegressor()
rf.fit(trainX, trainY)
prediction, bias, contributions = ti.predict(rf, testX)

Prediction is the sum of bias and feature contributions:

assert(numpy.allclose(prediction, bias + np.sum(contributions, axis=1)))
assert(numpy.allclose(rf.predict(testX), bias + np.sum(contributions, axis=1)))

More usage examples at http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/.

## GitHub

https://github.com/andosa/treeinterpreter