A huggingface transformers implementation of Transformer Memory as a Differentiable Search Index, Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, Donald Metzler

Requirements: python=3.8 transformers=4.17.0 datasets=1.18.3 wandb

Note: This is not the official repository.

Goal of this repository

Reproduce the results of DSI Large, Naive String Docid, NQ10K. According to Table 3 in the original paper, we should have [email protected]=0.347,[email protected]=0.605

Step1: Create NQ10K training (indexing) and validation datasets

cd data/NQ
python3 create_NQ_train_vali.py

Step2: Run training script

cd back to the root directory and run:

python3 train.py

we use wandb to log the Hits scores during training:



As the above plots show, the current implementation is worse than what is reported in the original paper, there are many possible reasons: the ratio of training and indexing examples (we use 1:1), number of training steps, the way of constructing documents text, etc. Although, seems the scores are on par with BM25 already.

If you can identify the reason or any bug, welcome to open a PR to fix it!


View Github